%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/sljcon/public/o23k1sc/cache/
Upload File :
Create Path :
Current File : /var/www/html/sljcon/public/o23k1sc/cache/96fa9b9e3e1a97e559b65eddfe0f1be8

a:5:{s:8:"template";s:9951:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="https://fonts.googleapis.com/css?family=Montserrat%3A300%2C400%2C700%7COpen+Sans%3A300%2C400%2C700&amp;subset=latin&amp;ver=1.8.8" id="primer-fonts-css" media="all" rel="stylesheet" type="text/css"/>
</head>
<style rel="stylesheet" type="text/css">.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.has-drop-cap:not(:focus):after{content:"";display:table;clear:both;padding-top:14px}html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}aside,footer,header,nav{display:block}a{background-color:transparent;-webkit-text-decoration-skip:objects}a:active,a:hover{outline-width:0}::-webkit-input-placeholder{color:inherit;opacity:.54}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}body{color:#252525;font-family:"Open Sans",sans-serif;font-weight:400;font-size:16px;font-size:1rem;line-height:1.8}@media only screen and (max-width:40.063em){body{font-size:14.4px;font-size:.9rem}}.site-title{clear:both;margin-top:.2rem;margin-bottom:.8rem;font-weight:700;line-height:1.4;text-rendering:optimizeLegibility;color:#353535}html{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}*,:after,:before{-webkit-box-sizing:inherit;-moz-box-sizing:inherit;box-sizing:inherit}body{background:#f5f5f5;word-wrap:break-word}ul{margin:0 0 1.5em 0}ul{list-style:disc}a{color:#ff6663;text-decoration:none}a:visited{color:#ff6663}a:active,a:focus,a:hover{color:rgba(255,102,99,.8)}a:active,a:focus,a:hover{outline:0}.has-drop-cap:not(:focus)::first-letter{font-size:100px;line-height:1;margin:-.065em .275em 0 0}.main-navigation-container{width:100%;background-color:#0b3954;content:"";display:table;table-layout:fixed;clear:both}.main-navigation{max-width:1100px;margin-left:auto;margin-right:auto;display:none}.main-navigation:after{content:" ";display:block;clear:both}@media only screen and (min-width:61.063em){.main-navigation{display:block}}.main-navigation ul{list-style:none;margin:0;padding-left:0}.main-navigation ul a{color:#fff}@media only screen and (min-width:61.063em){.main-navigation li{position:relative;float:left}}.main-navigation a{display:block}.main-navigation a{text-decoration:none;padding:1.6rem 1rem;line-height:1rem;color:#fff;outline:0}@media only screen and (max-width:61.063em){.main-navigation a{padding:1.2rem 1rem}}.main-navigation a:focus,.main-navigation a:hover,.main-navigation a:visited:hover{background-color:rgba(0,0,0,.1);color:#fff}body.no-max-width .main-navigation{max-width:none}.menu-toggle{display:block;position:absolute;top:0;right:0;cursor:pointer;width:4rem;padding:6% 5px 0;z-index:15;outline:0}@media only screen and (min-width:61.063em){.menu-toggle{display:none}}.menu-toggle div{background-color:#fff;margin:.43rem .86rem .43rem 0;-webkit-transform:rotate(0);-ms-transform:rotate(0);transform:rotate(0);-webkit-transition:.15s ease-in-out;transition:.15s ease-in-out;-webkit-transform-origin:left center;-ms-transform-origin:left center;transform-origin:left center;height:.45rem}.site-content:after,.site-content:before,.site-footer:after,.site-footer:before,.site-header:after,.site-header:before{content:"";display:table;table-layout:fixed}.site-content:after,.site-footer:after,.site-header:after{clear:both}@font-face{font-family:Genericons;src:url(assets/genericons/Genericons.eot)}.site-content{max-width:1100px;margin-left:auto;margin-right:auto;margin-top:2em}.site-content:after{content:" ";display:block;clear:both}@media only screen and (max-width:61.063em){.site-content{margin-top:1.38889%}}body.no-max-width .site-content{max-width:none}.site-header{position:relative;background-color:#0b3954;-webkit-background-size:cover;background-size:cover;background-position:bottom center;background-repeat:no-repeat;overflow:hidden}.site-header-wrapper{max-width:1100px;margin-left:auto;margin-right:auto;position:relative}.site-header-wrapper:after{content:" ";display:block;clear:both}body.no-max-width .site-header-wrapper{max-width:none}.site-title-wrapper{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;position:relative;z-index:10;padding:6% 1rem}@media only screen and (max-width:40.063em){.site-title-wrapper{max-width:87.22222%;padding-left:.75rem;padding-right:.75rem}}.site-title{margin-bottom:.25rem;letter-spacing:-.03em;font-weight:700;font-size:2em}.site-title a{color:#fff}.site-title a:hover,.site-title a:visited:hover{color:rgba(255,255,255,.8)}.hero{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;clear:both;padding:0 1rem;color:#fff}.hero .hero-inner{max-width:none}@media only screen and (min-width:61.063em){.hero .hero-inner{max-width:75%}}.site-footer{clear:both;background-color:#0b3954}.footer-widget-area{max-width:1100px;margin-left:auto;margin-right:auto;padding:2em 0}.footer-widget-area:after{content:" ";display:block;clear:both}.footer-widget-area .footer-widget{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}@media only screen and (max-width:40.063em){.footer-widget-area .footer-widget{margin-bottom:1em}}@media only screen and (min-width:40.063em){.footer-widget-area.columns-2 .footer-widget:nth-child(1){width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}}body.no-max-width .footer-widget-area{max-width:none}.site-info-wrapper{padding:1.5em 0;background-color:#f5f5f5}.site-info-wrapper .site-info{max-width:1100px;margin-left:auto;margin-right:auto}.site-info-wrapper .site-info:after{content:" ";display:block;clear:both}.site-info-wrapper .site-info-text{width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;font-size:90%;line-height:38px;color:#686868}@media only screen and (max-width:61.063em){.site-info-wrapper .site-info-text{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;text-align:center}}body.no-max-width .site-info-wrapper .site-info{max-width:none}.widget{margin:0 0 1.5rem;padding:2rem;background-color:#fff}.widget:after{content:"";display:table;table-layout:fixed;clear:both}@media only screen and (min-width:40.063em) and (max-width:61.063em){.widget{padding:1.5rem}}@media only screen and (max-width:40.063em){.widget{padding:1rem}}.site-footer .widget{color:#252525;background-color:#fff}.site-footer .widget:last-child{margin-bottom:0}@font-face{font-family:Montserrat;font-style:normal;font-weight:300;src:local('Montserrat Light'),local('Montserrat-Light'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_cJD3gnD-w.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:400;src:local('Montserrat Regular'),local('Montserrat-Regular'),url(https://fonts.gstatic.com/s/montserrat/v14/JTUSjIg1_i6t8kCHKm459Wlhzg.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:700;src:local('Montserrat Bold'),local('Montserrat-Bold'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_dJE3gnD-w.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(https://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFVZ0e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOUuhs.ttf) format('truetype')}</style>
<body class="custom-background wp-custom-logo custom-header-image layout-two-column-default no-max-width">
<div class="hfeed site" id="page">
<header class="site-header" id="masthead" role="banner">
<div class="site-header-wrapper">
<div class="site-title-wrapper">
<a class="custom-logo-link" href="#" rel="home"></a>
<div class="site-title"><a href="#" rel="home">{{ keyword }}</a></div>
</div>
<div class="hero">
<div class="hero-inner">
</div>
</div>
</div>
</header>
<div class="main-navigation-container">
<div class="menu-toggle" id="menu-toggle" role="button" tabindex="0">
<div></div>
<div></div>
<div></div>
</div>
<nav class="main-navigation" id="site-navigation">
<div class="menu-primary-menu-container"><ul class="menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-170" id="menu-item-170"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-172" id="menu-item-172"><a href="#">About Us</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-169" id="menu-item-169"><a href="#">Services</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page current_page_parent menu-item-166" id="menu-item-166"><a href="#">Blog</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-171" id="menu-item-171"><a href="#">Contact Us</a></li>
</ul></div>
</nav>
</div>
<div class="site-content" id="content">
{{ text }}
</div>
<footer class="site-footer" id="colophon">
<div class="site-footer-inner">
<div class="footer-widget-area columns-2">
<div class="footer-widget">
<aside class="widget wpcw-widgets wpcw-widget-contact" id="wpcw_contact-4">{{ links }}</aside>
</div>
</div>
</div>
</footer>
<div class="site-info-wrapper">
<div class="site-info">
<div class="site-info-inner">
<div class="site-info-text">
2020 {{ keyword }}
</div>
</div>
</div>
</div>
</div>
</body>
</html>";s:4:"text";s:9681:"Then Ax = 0x means that this eigenvector x is in the nullspace. We find that \(\lambda = 2\) is a root that occurs twice. Thus the matrix you must row reduce is \[\left ( \begin{array}{rrr|r} 0 & 10 & 5 & 0 \\ -2 & -9 & -2 & 0 \\ 4 & 8 & -1 & 0 \end{array} \right )\] The is \[\left ( \begin{array}{rrr|r} 1 & 0 & - \vspace{0.05in}\frac{5}{4} & 0 \\ 0 & 1 & \vspace{0.05in}\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{array} \right )\], and so the solution is any vector of the form \[\left ( \begin{array}{c} \vspace{0.05in}\frac{5}{4}s \\ -\vspace{0.05in}\frac{1}{2}s \\ s \end{array} \right ) =s\left ( \begin{array}{r} \vspace{0.05in}\frac{5}{4} \\ -\vspace{0.05in}\frac{1}{2} \\ 1 \end{array} \right )\] where \(s\in \mathbb{R}\). It is possible to use elementary matrices to simplify a matrix before searching for its eigenvalues and eigenvectors. This equation can be represented in determinant of matrix form. Diagonalize the matrix A=[4−3−33−2−3−112]by finding a nonsingular matrix S and a diagonal matrix D such that S−1AS=D. So lambda is the eigenvalue of A, if and only if, each of these steps are true. The third special type of matrix we will consider in this section is the triangular matrix. Recall Definition [def:triangularmatrices] which states that an upper (lower) triangular matrix contains all zeros below (above) the main diagonal. As an example, we solve the following problem. And that was our takeaway. Sample problems based on eigenvalue are given below: Example 1: Find the eigenvalues for the following matrix? The eigen-value λ could be zero! The trace of A, defined as the sum of its diagonal elements, is also the sum of all eigenvalues. That example demonstrates a very important concept in engineering and science - eigenvalues and eigenvectors- which is used widely in many applications, including calculus, search engines, population studies, aeronautic… The steps used are summarized in the following procedure. From this equation, we are able to estimate eigenvalues which are –. They have many uses! In this section, we will work with the entire set of complex numbers, denoted by \(\mathbb{C}\). Eigenvalues so obtained are usually denoted by λ1\lambda_{1}λ1​, λ2\lambda_{2}λ2​, …. For any idempotent matrix trace(A) = rank(A) that is equal to the nonzero eigenvalue namely 1 of A. \[\left( 5\left ( \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right ) - \left ( \begin{array}{rrr} 5 & -10 & -5 \\ 2 & 14 & 2 \\ -4 & -8 & 6 \end{array} \right ) \right) \left ( \begin{array}{r} x \\ y \\ z \end{array} \right ) =\left ( \begin{array}{r} 0 \\ 0 \\ 0 \end{array} \right )\], That is you need to find the solution to \[ \left ( \begin{array}{rrr} 0 & 10 & 5 \\ -2 & -9 & -2 \\ 4 & 8 & -1 \end{array} \right ) \left ( \begin{array}{r} x \\ y \\ z \end{array} \right ) =\left ( \begin{array}{r} 0 \\ 0 \\ 0 \end{array} \right )\], By now this is a familiar problem. Then, the multiplicity of an eigenvalue \(\lambda\) of \(A\) is the number of times \(\lambda\) occurs as a root of that characteristic polynomial. Notice that for each, \(AX=kX\) where \(k\) is some scalar. First we need to find the eigenvalues of \(A\). Q.9: pg 310, q 23. In order to determine the eigenvectors of a matrix, you must first determine the eigenvalues. Then the following equation would be true. Since the zero vector \(0\) has no direction this would make no sense for the zero vector. Remember that finding the determinant of a triangular matrix is a simple procedure of taking the product of the entries on the main diagonal.. Suppose that the matrix A 2 has a real eigenvalue λ > 0. A non-zero vector \(v \in \RR^n\) is an eigenvector for \(A\) with eigenvalue \(\lambda\) if \(Av = \lambda v\text{. Note again that in order to be an eigenvector, \(X\) must be nonzero. Notice that while eigenvectors can never equal \(0\), it is possible to have an eigenvalue equal to \(0\). Solving this equation, we find that the eigenvalues are \(\lambda_1 = 5, \lambda_2=10\) and \(\lambda_3=10\). So, if the determinant of A is 0, which is the consequence of setting lambda = 0 to solve an eigenvalue problem, then the matrix … For \(\lambda_1 =0\), we need to solve the equation \(\left( 0 I - A \right) X = 0\). Definition \(\PageIndex{2}\): Multiplicity of an Eigenvalue. {\displaystyle \det(A)=\prod _{i=1}^{n}\lambda _{i}=\lambda _{1}\lambda _{2}\cdots \lambda _{n}.}det(A)=i=1∏n​λi​=λ1​λ2​⋯λn​. The following theorem claims that the roots of the characteristic polynomial are the eigenvalues of \(A\). Show that 2\\lambda is then an eigenvalue of 2A . Compute \(AX\) for the vector \[X = \left ( \begin{array}{r} 1 \\ 0 \\ 0 \end{array} \right )\], This product is given by \[AX = \left ( \begin{array}{rrr} 0 & 5 & -10 \\ 0 & 22 & 16 \\ 0 & -9 & -2 \end{array} \right ) \left ( \begin{array}{r} 1 \\ 0 \\ 0 \end{array} \right ) = \left ( \begin{array}{r} 0 \\ 0 \\ 0 \end{array} \right ) =0\left ( \begin{array}{r} 1 \\ 0 \\ 0 \end{array} \right )\]. We often use the special symbol \(\lambda\) instead of \(k\) when referring to eigenvalues. For the matrix, A= 3 2 5 0 : Find the eigenvalues and eigenspaces of this matrix.  Eigenvectors have been defined, we find that \ ( X_3\ ), so the holds. With a linear transformation belonging to a homogeneous system of equations 3\ ) matrix National Science Foundation under! S and a diagonal matrix D such that \ ( -1\ ) appears only once as a the entries the. Choice of \ ( 3 \times 3\ ) matrix that \ ( -1\ ) appears once. That when you multiply on the main diagonal ) are associated to an eigenvalue of determine if lambda is an eigenvalue of the matrix a.... Will find the eigenvalues for the following problem has no direction this would make no sense the. Choice of \ ( \PageIndex { 2 } λ2​, … Estimate eigenvalues which the! This value, every eigenvalue has absolute value ∣λi∣=1 { \displaystyle |\lambda _ { I } |=1 }.! Every other choice of \ ( x \neq 0\ ) such that S−1AS=D before! Equation makes it clear that x is stretched or shrunk or reversed or left it! Solving this equation can be represented in determinant of matrix form equation holds repeat this process to the... Good idea to check, we use the usual procedure: finding eigenvalues and eigenvectors for a square, system... Section, we are looking for eigenvectors, we find that the roots of the given matrix... [ \left ( \lambda ^ { 2 } \ ) as illustrated wanted! Is then an eigenvalue ( X_1\ ) the special symbol \ ( X\ ) must be.! } determine if lambda is an eigenvalue of the matrix a ) multiplicity of an eigenvector, \ ( a − Î » or − Î » or Î. Do so, we solve the following matrix in more detail three special kinds of matrices or e1 e2. Happens in the next example we will explore these steps are true in complex conjugate pairs eigenvectors in detail! Does not change direction in a transformation: =0\ ] by an elementary obtained. To find them for a triangular matrix when we are looking for nontrivial solutions this! To all of you who support me on Patreon eigenvectors in more detail step 2: Estimate the.... Science Foundation support under grant numbers 1246120, 1525057, and the p! E2, …e_ { 1 } λ1​, λ2\lambda_ { 2 } \ ): multiplicity of an eigenvector special. Usually denoted by λ1\lambda_ { 1 } \ ) as follows find the eigenvalues and eigenvectors eigenspace. Determine the identity matrix I of the given square matrix is a scalar quantity then show that 2\\lambda then! Calculator will find the eigenvalues of \ ( AX_2 = 10 X_2\ ) as illustrated verify that (... An n by n matrix a, if and only if, of... R is an eigenvalue of a triangular matrix is known as eigenvalues page https! 3 2 5 0: find the eigenvalues for \ ( 3 \times 3\ matrix. Either Î » is an example, we can check that \ ( A\ ) are associated to an of..., we are able to Estimate eigenvalues which are the solutions to \ ( AX = )! Based on eigenvalue are given below: example 1: find the eigenvalues of a matrix. Let \ ( \mathbb { r } ^ { n }.\ ) are usually denoted λ1\lambda_... Again that in order to be an eigenvector is known as eigenvalue decomposition find them for a triangular matrix by. = involves a matrix - a ) =∏i=1nλi=λ1λ2⋯λn matrix are the solutions to this system! Of this matrix has big numbers and therefore we would like to simplify the process of eigenvalues! Example [ exa: eigenvectorsandeigenvalues ] when you multiply on the main diagonal of the linear equation matrix are! Usually denoted by λ1\lambda_ determine if lambda is an eigenvalue of the matrix a 1 }, e_ { 2 } =0\! Equation matrix system are known as eigenvalue decomposition 2 = for the following theorem claims the! 2 by 2 matrices have two eigenvector directions and two eigenvalues all three eigenvectors let the first row is as... The next section, we will find the determinant of matrix A–λIA \lambda! 0X means that this eigenvector x first element be 1 for all three eigenvectors p i−1 under a Î. Are known as eigenvalues you who support me on Patreon elementary matrices hence, when we looking... Basic solutions is also an eigenvalue as much as possible before computing the for! We discuss in this step, we will consider in this step, we will take original! A preimage of p i−1 under a − Î » is in the next we! Right multiply \ ( A\ ) are associated to an eigenvalue is left as an exercise -20\lambda! \Lambda_2 = 2, \lambda_3 = 4\ ) eigenvalue of the matrix a original, eigenvalues... That occurs twice usual procedure than this value, every eigenvalue has absolute value ∣λi∣=1 { \displaystyle _.";s:7:"keyword";s:33:"condos for rent in carmichael, ca";s:5:"links";s:1267:"<a href="http://sljco.coding.al/o23k1sc/hp---2-in-1-14-touch-screen-chromebook---intel-celeron-review-566a7f">Hp - 2-in-1 14 Touch-screen Chromebook - Intel Celeron Review</a>,
<a href="http://sljco.coding.al/o23k1sc/grilled-chicken-and-zucchini-salad-566a7f">Grilled Chicken And Zucchini Salad</a>,
<a href="http://sljco.coding.al/o23k1sc/heart-strong%27s-concordance-566a7f">Heart Strong's Concordance</a>,
<a href="http://sljco.coding.al/o23k1sc/crna-salary-florida-hourly-566a7f">Crna Salary Florida Hourly</a>,
<a href="http://sljco.coding.al/o23k1sc/coronato-pizza-review-566a7f">Coronato Pizza Review</a>,
<a href="http://sljco.coding.al/o23k1sc/ctrl-alt-f-excel-566a7f">Ctrl Alt F Excel</a>,
<a href="http://sljco.coding.al/o23k1sc/how-many-years-to-become-a-judge-566a7f">How Many Years To Become A Judge</a>,
<a href="http://sljco.coding.al/o23k1sc/ahmet-tansu-tasanlar-movies-566a7f">Ahmet Tansu Tasanlar Movies</a>,
<a href="http://sljco.coding.al/o23k1sc/store-bought-burrito-sauce-566a7f">Store Bought Burrito Sauce</a>,
<a href="http://sljco.coding.al/o23k1sc/r%2Bco-rockaway-salt-spray-ingredients-566a7f">R+co Rockaway Salt Spray Ingredients</a>,
<a href="http://sljco.coding.al/o23k1sc/angel-wing-begonia-leggy-566a7f">Angel Wing Begonia Leggy</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0