%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/o91-api/public/ck4fqo7/cache/
Upload File :
Create Path :
Current File : /var/www/html/o91-api/public/ck4fqo7/cache/3f61b944b8c5acb92817904a69d8ed2c

a:5:{s:8:"template";s:3841:"<!doctype html>
<html lang="es">
<head>
<meta charset="utf-8">
<meta content="IE=edge" http-equiv="X-UA-Compatible">
<title>{{ keyword }}</title>
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800&amp;subset=latin,latin-ext" id="divi-fonts-css" media="all" rel="stylesheet" type="text/css">
<meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0" name="viewport"></head>
<style rel="stylesheet" type="text/css">@charset "UTF-8";
@font-face{font-family:'Noto Sans';font-style:italic;font-weight:400;src:local('Noto Sans Italic'),local('NotoSans-Italic'),url(https://fonts.gstatic.com/s/notosans/v9/o-0OIpQlx3QUlC5A4PNr4ARCQ_w.ttf) format('truetype')}@font-face{font-family:'Noto Sans';font-style:italic;font-weight:700;src:local('Noto Sans Bold Italic'),local('NotoSans-BoldItalic'),url(https://fonts.gstatic.com/s/notosans/v9/o-0TIpQlx3QUlC5A4PNr4Az5ZuyDzWg.ttf) format('truetype')}@font-face{font-family:'Noto Sans';font-style:normal;font-weight:400;src:local('Noto Sans'),local('NotoSans'),url(https://fonts.gstatic.com/s/notosans/v9/o-0IIpQlx3QUlC5A4PNr5TRF.ttf) format('truetype')}
@font-face{font-family:'Open Sans';font-style:italic;font-weight:700;src:local('Open Sans Bold Italic'),local('OpenSans-BoldItalic'),url(https://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWiUNhrIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:800;src:local('Open Sans ExtraBold Italic'),local('OpenSans-ExtraBoldItalic'),url(https://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKW-U9hrIqY.ttf) format('truetype')}
html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}nav{display:block}a{background:0 0}a:active,a:hover{outline:0}@media print{*{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}p{orphans:3;widows:3}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}a{color:#428bca;text-decoration:none}a:focus,a:hover{color:#2a6496;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}p{margin:0 0 10px}ul{margin-top:0;margin-bottom:10px}ul ul{margin-bottom:0}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.clearfix:after,.clearfix:before,.container:after,.container:before{display:table;content:" "}.clearfix:after,.container:after{clear:both}@-ms-viewport{width:device-width} .clearfix:after,.clearfix:before{content:"";display:table}.clearfix:after{clear:both}body{background-color:#e5e5e5}body:not(.custom-background-image):after,body:not(.custom-background-image):before{height:0!important}</style>
<body>
<div id="page-container">
<header id="main-header">
<div class="container clearfix et_menu_container">
<div class="logo_container">
<span class="logo_helper"></span>
<a href="{{ KEYWORDBYINDEX-ANCHOR 0 }}">{{ KEYWORDBYINDEX 0 }}</a>
</div>
</div> 
</header> 
<div id="et-main-area">
{{ text }}
<footer id="main-footer">
<div id="footer-bottom">
<div class="container clearfix">
{{ links }}
<p id="footer-info">{{ keyword }} 2022</p> </div> 
</div>
</footer> 
</div>
</div>
</body>
</html>";s:4:"text";s:24495:"                  {                        ,     {\displaystyle \mathbf {V} }                           {\displaystyle \sigma _{i}}                          Here Ui and Vi are the i-th columns of the corresponding SVD matrices, σi are the ordered singular values, and each Ai is separable.             Using this rewriting of                        1                                                     M                      V             1 WebEn álgebra lineal, la forma canónica de Jordan es la forma de la matriz de un endomorfismo de un espacio vectorial en cierta base asociada a la descomposición en suma directa de subespacios invariantes bajo dicho endomorfismo.                          {\displaystyle \ \mathbf {M} =\mathbf {U\Sigma V^{*}} \ }             i WebEn álgebra lineal, sea un espacio vectorial sobre un cuerpo de escalares o , la base canónica o base usual es una colección de vectores linealmente independientes cuyo número coincide con la dimensión del propio espacio vectorial.. De entre las (infinitas) bases existentes, la base canónica está normalizada, es decir, los módulos de los vectores son unitarios, o lo que es …            It also means that if there are several vanishing singular values, any linear combination of the corresponding right-singular vectors is a valid solution.     {\displaystyle t\in \mathbb {R} ^{3}}                                                       n                          In other words, the singular values of DAE, for invertible diagonal matrices D and E, are equal to the singular values of A.                           WebHabitualmente se colocan los datos en una tabla de contingencia o de doble entrada, donde aparecen las frecuencias observadas (frecuencias absolutas conjuntas o número de casos que presentan simultáneamente las modalidades fila y columna) y se emplean métodos directos como el análisis de los residuos de la diferencia entre valores observados y esperados o la …           D                                                            2                               represents the scaling of each coordinate xi by the factor σi.  is the conjugate transpose of V. Such decomposition always exists for any complex matrix.         =                                        {\displaystyle \mathbf {V} }                                                           (    It is true in general, for a bounded operator M on (possibly infinite-dimensional) Hilbert spaces.                                         d                  , into the following conditions: where the subscripts on the identity matrices are used to remark that they are of different dimensions.                                  m                         Specifically.              {\displaystyle \ \sigma _{i}=\Sigma _{ii}\ }             The complex Hermitian case is similar; there f(x) = x* M x is a real-valued function of 2n real variables.             1                                                                          Download Free PDF View PDF.          :=       and                                                 1     Password.                                       If the matrix M is real but not square, namely m×n with m ≠ n, it can be interpreted as a linear transformation from Rn to  Rm.           C                                        {\displaystyle \mathbf {\Sigma } } An immediate consequence of this is: The singular value decomposition was originally developed by differential geometers, who wished to determine whether a real bilinear form could be made equal to another by independent orthogonal transformations of the two spaces it acts on.                             i                  z               T                    min     where U is an                        i                                   2                                       can be represented using mode-k multiplication of matrix              3     {\displaystyle \{\lambda _{i}^{-1/2}\mathbf {M} {\boldsymbol {v}}_{i}\}_{i=1}^{\ell }}                                     Webdescomposición, que puede convertirse en fuente de vectores Contaminación de alimento y agua; alimentos Accidentes; contaminantes del agua y alimentos Rutas Contacto, picadas Ingestión, contacto Contacto, ingestión Los microorganismos patógenos que pueden estar presentes en el medio ambiente, según donde se encuentren, pueden ingresar al                                                                          τ                                     {\displaystyle \mathbf {M} ^{*}\mathbf {M} }                                              (                                   {\displaystyle \ r\leq \min\{m,n\}\ }      (1997).                                      ℓ     {\displaystyle M=USV^{\textsf {T}}}             i          Download Free PDF.           Σ         = By separable, we mean that a matrix A can be written as an outer product of two vectors A = u ⊗ v, or, in coordinates,          =           Σ         ∈         V             r                                 , is an eigenvector of                          Comprenden cuatro grupos bien definidos: los ciempiés, milpiés, paurópodos, y sínfilos, todos terrestres; se han …                       The second type of decomposition computes the orthonormal subspaces associated with the different factors appearing in the tensor product of vector spaces in which the tensor lives.             M                Σ     {\displaystyle m\times r}     {\displaystyle \mathbf {V} _{1}} Interestingly, SVD has been used to improve gravitational waveform modeling by the ground-based gravitational-wave interferometer aLIGO.                                              (                }                              is unitary.                                             =         { Download.                          Para que cada parte estuviera en equilibrio mecánico, sobre la superficie de corte de cada una de las partes debería restablecerse la interacción que ejercía la otra parte del cuerpo. Note that the number of non-zero σi is exactly the rank of the matrix.                                       Then U and V⁎ can be chosen to be rotations/reflections of Rm and Rn, respectively; and                          V          This matches with the matrix formalism used above denoting with          i Si se considera un cuerpo sometido a un sistema de fuerzas y momentos de fuerza, se puede observar la acción de las tensiones mecánicas si se imagina un corte mediante un plano imaginario π que divida el cuerpo en dos partes.                                         ‖                    ×           σ                         La introducción del coeficiente de Poisson en los cálculos estimaba correctamente la tensión al tener en cuenta que la fuerza F se distribuía en un área algo más pequeña que la sección inicial, lo cual hace que σ > s. Un caso particular: tensión uniaxial (problema unidimensional), https://es.wikipedia.org/w/index.php?title=Tensión_mecánica&oldid=145768138, Wikipedia:Artículos con identificadores GND, Wikipedia:Artículos con identificadores AAT, Wikipedia:Páginas con enlaces mágicos de ISBN, Licencia Creative Commons Atribución Compartir Igual 3.0.                               U                      } The scaling matrix  If M is compact, so is M⁎M. Download.                 F the diagonal entries of                           Σ                  ,                              U             F                                                        {\displaystyle {\bar {\mathbf {D} }}_{jj}=0}                    n                                                   {\displaystyle \mathbf {\Sigma } } Rikardo Fu.         =                     M                    ∈           z  is not positive-semidefinite and Hermitian but still diagonalizable, its eigendecomposition and singular value decomposition are distinct.          SVD was coupled with radial basis functions to interpolate solutions to three-dimensional unsteady flow problems.[11].         , En el Sistema Internacional, la unidad de la tensión mecánica es el pascal (1 Pa = 1 N/m²). However, when                        Download.        En física e ingeniería, se denomina tensión mecánica a la magnitud física que representa la fuerza por unidad de área en el entorno de un punto material sobre una superficie real o imaginaria de un medio continuo.         {\displaystyle z_{i}\in \mathbb {C} }                             v                         the matrix whose columns are the vectors                                                                        {\displaystyle \|\cdot \|_{F}}  in Kn such that.           ×          complex unitary matrix,                                  {\displaystyle \times _{1}U}                     {\displaystyle \mathbf {\Sigma } }                  1             U                        .             −                           Σ                       {\displaystyle n\times n}                            It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any                                              In 1907, Erhard Schmidt defined an analog of singular values for integral operators (which are compact, under some weak technical assumptions); it seems he was unaware of the parallel work on singular values of finite matrices.              1                          {\displaystyle f\in \mathbb {R} ^{3}}         + . WebDownload Free PDF.                ‖                 M                                    {\displaystyle \mathbf {V} }      It is possible to use the SVD of a square matrix A to determine the orthogonal matrix O closest to A.         ℓ                                                 t           U           V                                               V  matrix.          This approach cannot readily be accelerated, as the QR algorithm can with spectral shifts or deflation.         }                                 Trab Mdos.             Sea                                    {\displaystyle {\tilde {\boldsymbol {\Sigma }}}}                           {\displaystyle \mathbf {v} }     {\displaystyle \mathbf {u} _{1}}      WebUna matriz hermitiana (o hermítica, en honor a Charles Hermite) es una matriz cuadrada de elementos complejos que tiene la característica de ser igual a su propia traspuesta conjugada.Es decir, el elemento en la i-ésima fila y j-ésima columna es igual al conjugado del elemento en la j-ésima fila e i-ésima columna, para todos los índices i y j:           Σ This is equivalent to the observation that if          m     {\displaystyle \mathbf {v} }             1        The above series expression gives an explicit such representation. Thus the SVD decomposition breaks down any linear transformation of Rm into a composition of three geometrical transformations: a rotation or reflection (V⁎), followed by a coordinate-by-coordinate scaling (                                     =           Σ Investigación de operaciones, 9na. This decomposition is referred to in the literature as the higher-order SVD (HOSVD) or Tucker3/TuckerM.                    is an               ×                                                     m                       n  with value zero are all in the highest-numbered columns (or rows), the singular value decomposition can be written as                                                                 WebCalculadora gratuita para convertir decimales a fracción - Convertir números decimales a fracciones paso por paso                ECOLOGIA.pdf.                         {\displaystyle m\times n}                                                 {\displaystyle \mathbf {\Sigma } }               Applying the diagonalization result, the unitary image of its positive square root Tf  has a set of orthonormal eigenvectors {ei} corresponding to strictly positive eigenvalues {σi}.                {\displaystyle T_{f}}                      }            , then  WebLos miriápodos o miriópodos [1] (Myriapoda, del griego μυρια myria, "innumerable" y ποδος podos, "pie") son un subfilo de artrópodos mandibulados, similares a los insectos en algunos aspectos, pero con muchos caracteres que los diferencian de estos. This observation means that if A is a square matrix and has no vanishing singular value, the equation has no non-zero x as a solution.                                                              = the matrices Uk and Vk contain only the first k columns of U and V, and Σk contains only the first k singular values from Σ. {\displaystyle \ \mathbf {U\Sigma V} ^{\mathsf {T}}\ .}.         j         n                B                                                     I            This problem is equivalent to finding the nearest orthogonal matrix to a given matrix M = ATB.         ×          the largest singular value of M. The last of the Ky Fan norms, the sum of all singular values, is the trace norm (also known as the 'nuclear norm'), defined by ||M|| = Tr[(M* M)1/2] (the eigenvalues of M* M are the squares of the singular values).                     and notice that U V* is still a partial isometry while VTfV* is positive.                           with eigenvalue                                                                              n              {\displaystyle \{\lambda _{i}\}_{i=1}^{\ell }}                                             The truncated SVD is no longer an exact decomposition of the original matrix M, but rather provides the optimal low-rank matrix approximation                                                                       n                                           Σ                          This particular singular value decomposition is not unique.  such that.                    3                        Continue Reading.          (Various authors use different notation for the pseudoinverse; here we use †.)                      M If it were negative, changing the sign of either u1 or v1 would make it positive and therefore larger.           Σ M              therefore contain the eigenvectors of  James Joseph Sylvester also arrived at the singular value decomposition for real square matrices in 1889, apparently independently of both Beltrami and Jordan.              (                                                   1 Practical methods for computing the SVD date back to Kogbetliantz in 1954–1955 and Hestenes in 1958,[27] resembling closely the Jacobi eigenvalue algorithm, which uses plane rotations or Givens rotations. This concept can be generalized to n-dimensional Euclidean space, with the singular values of any n × n square matrix being viewed as the magnitude of the semiaxis of an n-dimensional ellipsoid.         rank     {\displaystyle \operatorname {rank} \left({\tilde {\mathbf {M} }}\right)=r}                                                                         The first proof of the singular value decomposition for rectangular and complex matrices seems to be by Carl Eckart and Gale J.                            {\displaystyle \mathbf {V} _{1}}             V                   = Consider the function σ restricted to Sm−1 × Sn−1.                    M WebInvestigacion de Operaciones - Taha - 7ma.pdf. The singular values are related to another norm on the space of operators.              ×                    The SVD and pseudoinverse have been successfully applied to signal processing,[4] image processing[citation needed] and big data (e.g., in genomic signal processing).[5][6][7][8]. When the                           ) Política y Gobierno, Centro de Investigación y Docencia Económica, volumen XVI, núm.                  Vincent Jhovany Ceja Rubalcava.            [17] Finally, the unitary-ness of               {\displaystyle \times _{2}V} Calculo 2. {Vei}) can be considered the left-singular (resp.                                                 1                                     are orthonormal and can be extended to an orthonormal basis.                                ⁡ De varias variables.           The number of independent left and right-singular vectors coincides, and these singular vectors appear in the same columns of U and V corresponding to diagonal elements of                               =                                                                                        The second step can be done by a variant of the QR algorithm for the computation of eigenvalues, which was first described by Golub & Kahan (1965).             v           Σ             2 Furthermore, a compact self-adjoint operator can be diagonalized by its eigenvectors. Then its two singular values are given by.           )                       i         r                          R                          U           -th column is the  The singular value decomposition can be computed using the following observations: The SVD of a matrix M is typically computed by a two-step procedure.     {\displaystyle \{{\boldsymbol {v}}_{i}\}_{i=1}^{\ell }}             M                  =                    } If  La definición dada por el Diccionario de la lengua española no aclara el asunto; [2] dice que tiene el "cuerpo negro", por lo que, sorprendentemente, no incluye a la mosca común (Musca domestica), cuyo abdomen es amarillento.. En otras páginas sobre …    WebMatesfacil, ejercicios resueltos de matemáticas ISSN: 2659-8442.                                                    j La definición anterior se aplica tanto a fuerzas localizadas como fuerzas distribuidas, uniformemente o …                    u                                                                                           3                                                {\displaystyle \sigma =E{\frac {\Delta L}{L}}\,}, σ                    C                     ≤                           ∗             coordinates, also extends the vector with zeros, i.e.         by any matrix of a fixed rank t. where matrix Ut is m×t, Σt is t×t diagonal, and Vt* is t×n.                      2 calculo de varias variables.dennis zill. , where the columns of     The remaining vectors of U and V* are not calculated.             =  equal to             .                                Specifically, the singular value decomposition of an complex matrix M is a factorization of the form = , …              =                      =                  ×             {\displaystyle \mathbf {\Sigma } } Transforma una función matemática en otra, obteniendo una representación en el dominio de la frecuencia, siendo la función original una función en el dominio del tiempo.                               1            However, if the singular value of 0 exists, the extra columns of U or V already appear as left or right-singular vectors.                                V              WebIn linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix.It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. As shown in the figure, the singular values can be interpreted as the magnitude of the semiaxes of an ellipse in 2D. In the first step, the matrix is reduced to a bidiagonal matrix. Download.           V         }                        V                       π     {\displaystyle \ell \times \ell }                        WebEl volumen de un tetraedro es V = , siendo B el área de una cara y h la altura del tetraedro, o sea el segmento perpendicular al plano de la base desde el vértice opuesto.     {\displaystyle \mathbf {U} ={\begin{bmatrix}\mathbf {U} _{1}&\mathbf {U} _{2}\end{bmatrix}}}               L        Click here to sign up.  such that          =                      denote the Pauli matrices.                                Altagracia German.          971 Kb) Aporte de Cesia Leiva T. Dispersión (Doc 42 Kb)                             u Only the r column vectors of U and r row vectors of V* corresponding to the non-zero singular values Σr are calculated.            A non-negative real number σ is a singular value for M if and only if there exist unit-length vectors           WebVectores, ejercicios propuestos PDF. where       Nevertheless, the two decompositions are related.              , said to be truncated, which has a specific rank r. In the case that the approximation is based on minimizing the Frobenius norm of the difference between M and  Forging a New Social Contract for the Future of America de Dowell Myers, New York, Russell Sage Foundation, 2007, 356 pp.                                                        Conversely, if m < n, then V is padded by n − m orthogonal vectors from the kernel.                 The solution is the product UV⁎.                          ∗          {\displaystyle \mathbf {v} _{1}^{\textsf {T}}}     {\displaystyle i}              T     {\displaystyle {\tilde {\mathbf {M} }}} This step can only be done with an iterative method (as with eigenvalue algorithms).                   D                                         n               Specifically, the singular value decomposition of an            σ                     Separable models often arise in biological systems, and the SVD factorization is useful to analyze such systems.         κ             π    t             r        This takes O(mn2) floating-point operations (flop), assuming that m ≥ n. The second step is to compute the SVD of the bidiagonal matrix.      WebEn estadística, el análisis de componentes principales (en español ACP, en inglés, PCA) es una técnica utilizada para describir un conjunto de datos en términos de nuevas variables («componentes») no correlacionadas.Los componentes se ordenan por la cantidad de varianza original que describen, por lo que la técnica es útil para reducir la dimensionalidad …          Sin embargo, en el caso más general posible la inercia rotacional debe representarse por medio … Eventually,[clarification needed] this iteration between QR decomposition and LQ decomposition produces left- and right- unitary singular matrices.                             / It is also used in output-only modal analysis, where the non-scaled mode shapes can be determined from the singular vectors.        Singular values beyond a significant gap are assumed to be numerically equivalent to zero. Lo primero que encontraras es un listado de los temas de física para estudiantes de tercer …                                     0 WebImmigrantes and Boomers.                        π                                                                         × The fourth mathematician to discover the singular value decomposition independently is Autonne in 1915, who arrived at it via the polar decomposition. , for   in which            are in general not unitary, since they might not be square.           σ             , with            τ            The SVD is also extremely useful in all areas of science, engineering, and statistics, such as signal processing, least squares fitting of data, and process control.                                                    v             u                                 such that.     {\displaystyle t\,}            ) Thus, except for positive semi-definite matrices, the eigenvalue decomposition and SVD of M, while related, differ: the eigenvalue decomposition is M = UDU−1, where U is not necessarily unitary and D is not necessarily positive semi-definite, while the SVD is M = UΣV⁎, where          B  semi-unitary matrix and  They form two sets of orthonormal bases u1, ..., um  and v1, ..., vn , and if they are sorted so that the singular values  Related Papers.                z           u                    1                    These directions happen to be mutually orthogonal. Download Free PDF View PDF.      One can easily verify the relationship between the Ky Fan 1-norm and singular values.                       2 where          is an  , besides scaling the first           Dicha forma canónica consistirá en que la matriz estará formada por "bloques de Jordan" en la diagonal y bloques de ceros fuera de … [3] This intuitively makes sense because an orthogonal matrix would have the decomposition UIV⁎ where I is the identity matrix, so that if A = UΣV⁎ then the product A = UV⁎ amounts to replacing the singular values with ones. ";s:7:"keyword";s:31:"descomposición de vectores pdf";s:5:"links";s:1514:"<a href="https://api.o91.coding.al/ck4fqo7/cuentos-del-t%C3%ADo-lino%3A-el-rel%C3%A1mpago">Cuentos Del Tío Lino: El Relámpago</a>,
<a href="https://api.o91.coding.al/ck4fqo7/evaluaci%C3%B3n-nutricional-de-la-embarazada-seg%C3%BAn-imc">Evaluación Nutricional De La Embarazada Según Imc</a>,
<a href="https://api.o91.coding.al/ck4fqo7/como-afectan-los-problemas-econ%C3%B3micos-a-la-familia">Como Afectan Los Problemas Económicos A La Familia</a>,
<a href="https://api.o91.coding.al/ck4fqo7/porcelanato-beige-60x60-sodimac">Porcelanato Beige 60x60 Sodimac</a>,
<a href="https://api.o91.coding.al/ck4fqo7/venta-de-departamentos-en-pueblo-libre-baratos">Venta De Departamentos En Pueblo Libre Baratos</a>,
<a href="https://api.o91.coding.al/ck4fqo7/sistema-financiero-peruano-2022">Sistema Financiero Peruano 2022</a>,
<a href="https://api.o91.coding.al/ck4fqo7/propuestas-para-mejorar-el-sal%C3%B3n-de-clases">Propuestas Para Mejorar El Salón De Clases</a>,
<a href="https://api.o91.coding.al/ck4fqo7/misi%C3%B3n-de-una-empresa-de-peluches">Misión De Una Empresa De Peluches</a>,
<a href="https://api.o91.coding.al/ck4fqo7/mascarilla-garnier-palta">Mascarilla Garnier Palta</a>,
<a href="https://api.o91.coding.al/ck4fqo7/instituto-continental-cursos">Instituto Continental Cursos</a>,
<a href="https://api.o91.coding.al/ck4fqo7/falta-de-recursos-did%C3%A1cticos">Falta De Recursos Didácticos</a>,
<a href="https://api.o91.coding.al/ck4fqo7/gato-andino-caracter%C3%ADsticas">Gato Andino Características</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0