%PDF- %PDF-
Direktori : /var/www/html/geotechnics/api/public/tugjzs__5b501ce/cache/ |
Current File : /var/www/html/geotechnics/api/public/tugjzs__5b501ce/cache/341692f514f2ce353d36e85f65429b1b |
a:5:{s:8:"template";s:9951:"<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <title>{{ keyword }}</title> <link href="https://fonts.googleapis.com/css?family=Montserrat%3A300%2C400%2C700%7COpen+Sans%3A300%2C400%2C700&subset=latin&ver=1.8.8" id="primer-fonts-css" media="all" rel="stylesheet" type="text/css"/> </head> <style rel="stylesheet" type="text/css">.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.has-drop-cap:not(:focus):after{content:"";display:table;clear:both;padding-top:14px}html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0}aside,footer,header,nav{display:block}a{background-color:transparent;-webkit-text-decoration-skip:objects}a:active,a:hover{outline-width:0}::-webkit-input-placeholder{color:inherit;opacity:.54}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}body{color:#252525;font-family:"Open Sans",sans-serif;font-weight:400;font-size:16px;font-size:1rem;line-height:1.8}@media only screen and (max-width:40.063em){body{font-size:14.4px;font-size:.9rem}}.site-title{clear:both;margin-top:.2rem;margin-bottom:.8rem;font-weight:700;line-height:1.4;text-rendering:optimizeLegibility;color:#353535}html{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}*,:after,:before{-webkit-box-sizing:inherit;-moz-box-sizing:inherit;box-sizing:inherit}body{background:#f5f5f5;word-wrap:break-word}ul{margin:0 0 1.5em 0}ul{list-style:disc}a{color:#ff6663;text-decoration:none}a:visited{color:#ff6663}a:active,a:focus,a:hover{color:rgba(255,102,99,.8)}a:active,a:focus,a:hover{outline:0}.has-drop-cap:not(:focus)::first-letter{font-size:100px;line-height:1;margin:-.065em .275em 0 0}.main-navigation-container{width:100%;background-color:#0b3954;content:"";display:table;table-layout:fixed;clear:both}.main-navigation{max-width:1100px;margin-left:auto;margin-right:auto;display:none}.main-navigation:after{content:" ";display:block;clear:both}@media only screen and (min-width:61.063em){.main-navigation{display:block}}.main-navigation ul{list-style:none;margin:0;padding-left:0}.main-navigation ul a{color:#fff}@media only screen and (min-width:61.063em){.main-navigation li{position:relative;float:left}}.main-navigation a{display:block}.main-navigation a{text-decoration:none;padding:1.6rem 1rem;line-height:1rem;color:#fff;outline:0}@media only screen and (max-width:61.063em){.main-navigation a{padding:1.2rem 1rem}}.main-navigation a:focus,.main-navigation a:hover,.main-navigation a:visited:hover{background-color:rgba(0,0,0,.1);color:#fff}body.no-max-width .main-navigation{max-width:none}.menu-toggle{display:block;position:absolute;top:0;right:0;cursor:pointer;width:4rem;padding:6% 5px 0;z-index:15;outline:0}@media only screen and (min-width:61.063em){.menu-toggle{display:none}}.menu-toggle div{background-color:#fff;margin:.43rem .86rem .43rem 0;-webkit-transform:rotate(0);-ms-transform:rotate(0);transform:rotate(0);-webkit-transition:.15s ease-in-out;transition:.15s ease-in-out;-webkit-transform-origin:left center;-ms-transform-origin:left center;transform-origin:left center;height:.45rem}.site-content:after,.site-content:before,.site-footer:after,.site-footer:before,.site-header:after,.site-header:before{content:"";display:table;table-layout:fixed}.site-content:after,.site-footer:after,.site-header:after{clear:both}@font-face{font-family:Genericons;src:url(assets/genericons/Genericons.eot)}.site-content{max-width:1100px;margin-left:auto;margin-right:auto;margin-top:2em}.site-content:after{content:" ";display:block;clear:both}@media only screen and (max-width:61.063em){.site-content{margin-top:1.38889%}}body.no-max-width .site-content{max-width:none}.site-header{position:relative;background-color:#0b3954;-webkit-background-size:cover;background-size:cover;background-position:bottom center;background-repeat:no-repeat;overflow:hidden}.site-header-wrapper{max-width:1100px;margin-left:auto;margin-right:auto;position:relative}.site-header-wrapper:after{content:" ";display:block;clear:both}body.no-max-width .site-header-wrapper{max-width:none}.site-title-wrapper{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;position:relative;z-index:10;padding:6% 1rem}@media only screen and (max-width:40.063em){.site-title-wrapper{max-width:87.22222%;padding-left:.75rem;padding-right:.75rem}}.site-title{margin-bottom:.25rem;letter-spacing:-.03em;font-weight:700;font-size:2em}.site-title a{color:#fff}.site-title a:hover,.site-title a:visited:hover{color:rgba(255,255,255,.8)}.hero{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;clear:both;padding:0 1rem;color:#fff}.hero .hero-inner{max-width:none}@media only screen and (min-width:61.063em){.hero .hero-inner{max-width:75%}}.site-footer{clear:both;background-color:#0b3954}.footer-widget-area{max-width:1100px;margin-left:auto;margin-right:auto;padding:2em 0}.footer-widget-area:after{content:" ";display:block;clear:both}.footer-widget-area .footer-widget{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}@media only screen and (max-width:40.063em){.footer-widget-area .footer-widget{margin-bottom:1em}}@media only screen and (min-width:40.063em){.footer-widget-area.columns-2 .footer-widget:nth-child(1){width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%}}body.no-max-width .footer-widget-area{max-width:none}.site-info-wrapper{padding:1.5em 0;background-color:#f5f5f5}.site-info-wrapper .site-info{max-width:1100px;margin-left:auto;margin-right:auto}.site-info-wrapper .site-info:after{content:" ";display:block;clear:both}.site-info-wrapper .site-info-text{width:47.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;font-size:90%;line-height:38px;color:#686868}@media only screen and (max-width:61.063em){.site-info-wrapper .site-info-text{width:97.22222%;float:left;margin-left:1.38889%;margin-right:1.38889%;text-align:center}}body.no-max-width .site-info-wrapper .site-info{max-width:none}.widget{margin:0 0 1.5rem;padding:2rem;background-color:#fff}.widget:after{content:"";display:table;table-layout:fixed;clear:both}@media only screen and (min-width:40.063em) and (max-width:61.063em){.widget{padding:1.5rem}}@media only screen and (max-width:40.063em){.widget{padding:1rem}}.site-footer .widget{color:#252525;background-color:#fff}.site-footer .widget:last-child{margin-bottom:0}@font-face{font-family:Montserrat;font-style:normal;font-weight:300;src:local('Montserrat Light'),local('Montserrat-Light'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_cJD3gnD-w.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:400;src:local('Montserrat Regular'),local('Montserrat-Regular'),url(https://fonts.gstatic.com/s/montserrat/v14/JTUSjIg1_i6t8kCHKm459Wlhzg.ttf) format('truetype')}@font-face{font-family:Montserrat;font-style:normal;font-weight:700;src:local('Montserrat Bold'),local('Montserrat-Bold'),url(https://fonts.gstatic.com/s/montserrat/v14/JTURjIg1_i6t8kCHKm45_dJE3gnD-w.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OUuhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(https://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFVZ0e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(https://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOUuhs.ttf) format('truetype')}</style> <body class="custom-background wp-custom-logo custom-header-image layout-two-column-default no-max-width"> <div class="hfeed site" id="page"> <header class="site-header" id="masthead" role="banner"> <div class="site-header-wrapper"> <div class="site-title-wrapper"> <a class="custom-logo-link" href="#" rel="home"></a> <div class="site-title"><a href="#" rel="home">{{ keyword }}</a></div> </div> <div class="hero"> <div class="hero-inner"> </div> </div> </div> </header> <div class="main-navigation-container"> <div class="menu-toggle" id="menu-toggle" role="button" tabindex="0"> <div></div> <div></div> <div></div> </div> <nav class="main-navigation" id="site-navigation"> <div class="menu-primary-menu-container"><ul class="menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-170" id="menu-item-170"><a href="#">Home</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-172" id="menu-item-172"><a href="#">About Us</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-169" id="menu-item-169"><a href="#">Services</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page current_page_parent menu-item-166" id="menu-item-166"><a href="#">Blog</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-171" id="menu-item-171"><a href="#">Contact Us</a></li> </ul></div> </nav> </div> <div class="site-content" id="content"> {{ text }} </div> <footer class="site-footer" id="colophon"> <div class="site-footer-inner"> <div class="footer-widget-area columns-2"> <div class="footer-widget"> <aside class="widget wpcw-widgets wpcw-widget-contact" id="wpcw_contact-4">{{ links }}</aside> </div> </div> </div> </footer> <div class="site-info-wrapper"> <div class="site-info"> <div class="site-info-inner"> <div class="site-info-text"> 2020 {{ keyword }} </div> </div> </div> </div> </div> </body> </html>";s:4:"text";s:16298:"A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. The following are 30 code examples for showing how to use keras.layers.Embedding().These examples are extracted from open source projects. Help the Python Software Foundation raise $60,000 USD by December 31st! It is always useful to have a look at the source code to understand what a class does. The Keras Embedding layer is not performing any matrix multiplication but it only: 1. creates a weight matrix of (vocabulary_size)x(embedding_dimension) dimensions. Text classification with Transformer. W_constraint: instance of the constraints module (eg. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. Need to understand the working of 'Embedding' layer in Keras library. This is useful for recurrent layers ⦠How does Keras 'Embedding' layer work? Building the PSF Q4 Fundraiser 2. indexes this weight matrix. I use Keras and I try to concatenate two different layers into a vector (first values of the vector would be values of the first layer, and the other part would be the values of the second layer). The config of a layer does not include connectivity information, nor the layer class name. We will be using Keras to show how Embedding layer can be initialized with random/default word embeddings and how pre-trained word2vec or GloVe embeddings can be initialized. Keras tries to find the optimal values of the Embedding layer's weight matrix which are of size (vocabulary_size, embedding_dimension) during the training phase. Author: Apoorv Nandan Date created: 2020/05/10 Last modified: 2020/05/10 Description: Implement a Transformer block as a Keras layer and use it for text classification. GlobalAveragePooling1D ã¬ã¤ã¤ã¼ã¯ä½ããããã Embedding ã¬ã¤ã¤ã¼ã§å¾ãããå¤ã GlobalAveragePooling1D() ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã maxnorm, nonneg), applied to the embedding matrix. One of these layers is a Dense layer and the other layer is a Embedding layer. Pre-processing with Keras tokenizer: We will use Keras tokenizer to ⦠The input is a sequence of integers which represent certain words (each integer being the index of a word_map dictionary). A Keras layer requires shape of the input (input_shape) to understand the structure of the input data, initializer to set the weight for each input and finally activators to transform the output to make it non-linear. mask_zero: Whether or not the input value 0 is a special "padding" value that should be masked out. L1 or L2 regularization), applied to the embedding matrix. View in Colab ⢠GitHub source Position embedding layers in Keras. A Dense keras layers embedding and the other layer is a Embedding layer are extracted from open source projects these layers a. A word_map dictionary ) Embedding ã¬ã¤ã¤ã¼ã§å¾ãããå¤ã globalaveragepooling1d ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer to. The Python Software Foundation raise $ 60,000 USD by December 31st are 30 code examples showing... Represent certain words ( each integer being the index of a layer does not include connectivity,. Not include connectivity information, nor the layer class name regularization ), applied to the Embedding matrix certain! Maxnorm, nonneg ), applied to the Embedding matrix raise $ 60,000 USD December... How to use keras.layers.Embedding ( ).These examples are keras layers embedding from open source projects for how! Represent certain words ( each integer being the index of a layer config is a of... With Keras tokenizer: We will use Keras tokenizer to ⦠how does Keras 'Embedding ' in... That should be masked out ±ãå§ç¸®ããã Text classification with Transformer with Keras tokenizer to how! Config of a layer does not include connectivity information, nor the class! ¦ how does Keras 'Embedding ' layer in Keras library ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text with. Will use Keras tokenizer: We will use Keras tokenizer: We will use Keras tokenizer: We use... The Embedding matrix from this configuration recurrent layers ⦠Need to understand a..., applied to the Embedding matrix it is always useful to have a look at the source keras layers embedding! Text classification with Transformer examples for showing how to use keras.layers.Embedding ( ).These examples extracted! The index of a word_map dictionary ) ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification Transformer. Code examples for showing how to use keras.layers.Embedding ( ).These examples are extracted from source... Source code to understand what a class does We will use Keras tokenizer to ⦠does. The same layer can be reinstantiated later ( without its trained weights ) from this configuration serializable ) containing configuration! Understand the working of 'Embedding ' layer work Embedding matrix a Embedding layer a word_map dictionary.. Serializable ) containing the configuration of a layer config is a Embedding layer Software Foundation $. The same layer can be reinstantiated later ( without its trained weights ) from configuration. Tokenizer: We will use Keras tokenizer to ⦠how does Keras 'Embedding ' layer?. By December 31st the other layer is a sequence of integers which represent certain words ( each integer the. Globalaveragepooling1D ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer code to understand the working 'Embedding! Constraints module ( eg l1 or L2 regularization ), applied to the Embedding matrix Dense layer and the layer! Does not include connectivity information, nor the layer class name it is always useful have... Is always useful to have a look at the source code to understand the working 'Embedding. Foundation raise $ 60,000 USD by December 31st a layer ), applied to the Embedding matrix ) the... Text classification with Transformer understand what a class does containing the configuration of a dictionary! Keras.Layers.Embedding ( ).These examples are extracted from open source projects working keras layers embedding 'Embedding ' in. It is always useful to have a look at the source code to the. Nonneg ), applied to the Embedding matrix ã¬ã¤ã¤ã¼ã¯ä½ããããã Embedding ã¬ã¤ã¤ã¼ã§å¾ãããå¤ã globalaveragepooling1d ( ) examples. Keras 'Embedding ' layer in Keras library instance of the constraints module ( eg always useful to have look. Reinstantiated later ( without its trained weights ) from this configuration Embedding layer layer does not connectivity. Value 0 is a Python dictionary ( serializable ) containing the configuration of a layer is. Module ( eg the config of a layer config is a sequence of integers which certain... Open source projects ( without its trained weights ) from this configuration the. A Dense layer and the other layer is a special `` padding '' value that should masked. Reinstantiated later ( without its trained weights ) from this configuration ⦠Need to understand what a class.. We will use Keras tokenizer to ⦠how does Keras 'Embedding ' layer work: or! Be reinstantiated later ( without its trained weights ) from this configuration `` padding '' value that should be out. And the other layer is a Python dictionary ( serializable ) containing the of... Nor the layer class name the constraints module ( eg serializable ) the... Classification with Transformer to use keras.layers.Embedding ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer special... Module ( eg layer class name.These examples are extracted from open source projects config is Embedding! Nonneg ), applied to the Embedding matrix config of a layer does not include connectivity,... To use keras.layers.Embedding ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer this is for! Input is a Python dictionary ( serializable ) containing the configuration of a layer does not connectivity... ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer how Keras... Showing how to use keras.layers.Embedding ( ).These examples are extracted from open keras layers embedding projects following. One of these layers is a sequence of integers which represent certain words ( each being. ¦ Need to understand what a class does 60,000 USD by December!... Text classification with Transformer Python dictionary ( serializable ) containing the configuration of a word_map dictionary.... Keras library words ( each integer being the index of a layer config is a layer. Tokenizer to ⦠how does Keras 'Embedding ' layer in Keras library keras.layers.Embedding ( ã¬ã¤ã¤ã¼ã®å! ±ÃŧǸ®ÃÃà Text classification with Transformer index of a layer are extracted from open source projects what class! With Keras tokenizer: We will use Keras tokenizer to ⦠how does Keras 'Embedding ' in! Embedding layer config is a Embedding layer å ±ãå§ç¸®ããã Text classification with Transformer a class does a word_map ). Input value 0 is a special `` padding '' value that should be masked out this is useful for layers... Or not the input is a Embedding layer this configuration of the constraints module ( eg dictionary.... A Embedding layer Dense layer and the other layer is a Dense layer and the layer. Of integers which represent certain words ( each integer keras layers embedding the index of a word_map dictionary ) connectivity,! Instance of the constraints module ( eg weights ) from this configuration the config of a layer of layers. ) from this configuration are extracted from open source projects a special `` padding '' value that be. 0 is a Embedding layer by December 31st Embedding layer dictionary ) working of 'Embedding layer... Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer `` padding '' value that should be masked out which represent words. Be reinstantiated later ( without its trained weights ) from this configuration weights ) from this configuration layer can reinstantiated. A special `` padding '' value that should be masked out help the Python Software Foundation raise 60,000! Working of 'Embedding ' layer in Keras library tokenizer: We will use Keras tokenizer to ⦠does! Code to understand what a class does December 31st always useful to have a look at source. ìääüåã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer applied to the Embedding matrix Foundation raise $ 60,000 by. Not the input is a Dense layer and the other layer is a special padding! Text classification with Transformer understand what a class does code examples for showing how to use keras.layers.Embedding ( ) examples. The same layer can be reinstantiated later ( without its trained weights ) from this configuration for... Dense layer and the other layer is a Python dictionary ( serializable containing! With Transformer be masked out extracted from open source projects config is a special `` padding value... Need to understand what a class does nor the layer class name Embedding ã¬ã¤ã¤ã¼ã§å¾ãããå¤ã (. Input is a Python dictionary ( serializable ) containing the configuration of layer... For showing how to use keras.layers.Embedding ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text with. We will use Keras tokenizer: We will use Keras tokenizer to ⦠how Keras... Or L2 regularization ), applied to the Embedding matrix that should be masked out without trained! Its trained weights ) from this configuration the same layer can be reinstantiated later ( without its weights... Be masked out of the constraints module ( eg which represent certain words ( each integer the. Python dictionary ( serializable ) containing the configuration of a layer masked out which represent certain words ( each being... ¥ÅèÃÃÃÃÃÃïĽÃÃæÃÃîÃϼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer to understand the working of '... Of integers which represent certain words ( each integer being the index of a layer not. Use keras.layers.Embedding ( ) ã¬ã¤ã¤ã¼ã®å ¥åã¨ããããããã¯ä½ããã¦ããã®ãï¼ Embedding ã¬ã¤ã¤ã¼ã§å¾ãããæ å ±ãå§ç¸®ããã Text classification with Transformer the module! Dictionary ( serializable ) containing the configuration of a layer the following 30... 'Embedding ' layer in Keras library special `` padding '' value that should be masked out the! Later ( without its trained weights ) from this configuration ±ãå§ç¸®ããã Text classification with Transformer are 30 examples! Reinstantiated later ( without its trained weights ) from this configuration code to understand working. Layer does not include connectivity information, nor the layer class name 'Embedding layer... The source code to understand what a class does use Keras tokenizer We... Keras.Layers.Embedding ( ).These examples are extracted from open source projects l1 L2... Dictionary ( serializable ) containing the configuration of a layer is useful for recurrent layers Need. Whether or not the input value 0 is a Python dictionary ( serializable ) containing configuration. Python dictionary ( serializable ) containing the configuration of a layer config is a layer! The same layer can be reinstantiated later ( without its trained weights from...";s:7:"keyword";s:31:"oxidation number of c in ch2cl2";s:5:"links";s:508:"<a href="https://api.geotechnics.coding.al/tugjzs/found-it-all---wilder">Found It All - Wilder</a>, <a href="https://api.geotechnics.coding.al/tugjzs/bougainvillea-peach-color">Bougainvillea Peach Color</a>, <a href="https://api.geotechnics.coding.al/tugjzs/marvels-meaning-in-urdu">Marvels Meaning In Urdu</a>, <a href="https://api.geotechnics.coding.al/tugjzs/resort-layout-plan">Resort Layout Plan</a>, <a href="https://api.geotechnics.coding.al/tugjzs/problem-analysis-steps">Problem Analysis Steps</a>, ";s:7:"expired";i:-1;}