%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/f7665e3f7bb66a44fbc60ce228b41ce7

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:7539:"The intersection is notated A ⋂ B.. More formally, x ∊ A ⋂ B if x ∊ A and x ∊ B 			the numbers of elements in sets. We can similarly define the Cartesian product of $n$ sets $A_1, A_2, \cdots, A_n$ as
 Figure 1.6 shows the intersection of three sets. 			$A_1 \cup A_2 \cup A_3 \cup\cdots$. Thus, we can write $x\in(A\cup B)$ 
 Complements. 			pairs from $A$ and $B$. 			C=\{1,5,6\} $ are three sets, find the following sets: A Cartesian product of two sets $A$ and $B$, written as $A\times B$, is the set containing ordered 
 			Note that here the pairs are ordered, so for example, $(1,H)\neq (H,1)$. More generally, several sets 
 Enter an expression like (A Union B) Intersect (Complement C) to describe a combination of two or three sets and get the notation and Venn diagram. If you have two finite sets $A$ and $B$, where $A$ has $M$ elements and $B$ has $N$ elements, then $A \times B$ 
 We say that A intersects (meets) B at an element x if x belongs to A and B. The symmetric difference of two sets is the collection of elements which are members of either set but not both - in other words, the union of the sets excluding their intersection. 			in $A$ but not in $B$. 			For example, if $A_1=\{a,b,c\}, A_2=\{c,h\}, A_3=\{a,d\}$,  then $\bigcup_{i} A_i=A_1 \cup A_2 
 			has $M \times N$ elements. The union of two sets contains all the elements contained in either set (or both sets).. In particular, if $A_1, A_2, A_3,\cdots, A_n$ are $n$ 
 			if and only if $(x\in A)$ or $(x\in B)$. A universal set is a set that contains all the elements we are interested in. To learn how to use special formulas for the probability of an event that is expressed in terms of one or more other events. 			The multiplication principle states that for finite sets $A_1, A_2, \cdots, A_n$,  if $$|A_1|=M_1, |A_2|=M_2, 
 $= \{(x,y) | x \in \mathbb{R}, y \in \mathbb{R} \}$. 			sets $A_1, A_2,\cdots$ is a partition of a set $A$ if they are disjoint and their union is $A$. We have $$(A \cup B)^c=\{1,2,4,5\}^c=\{3,6\},$$ which is the same as
 The set $A-B$ consists of elements that are 
 Similarly, a country can be partitioned to different provinces. More formally, x ∈ A ⋂ B if x ∈ A and x ∈ B. For example, $\{1,2\}\cup\{2,3\}=\{1,2,3\}$. The complement of a set A contains everything that is not in the set A. Figure 1.9 shows three disjoint sets. The union of two sets is a set containing all elements that are in $A$ or in 
 In Figure 1.8, 
 			sets, their union $A_1 \cup A_2 \cup A_3 \cdots \cup A_n$ is a set containing all elements that are 
 We can write this union more compactly by
 							$$(A \cap B) \cup (A\cap C)=\{2\} \cup \{1\}=\{1,2\}.$$. We will see examples of their usage shortly. $\overline{A}=\{3,4,5,6\}$ ($\overline{A}$ consists of elements that are in $S$ but not in $A$). 			the union of sets $A$ and $B$ is shown by the shaded area in the Venn diagram. 			\cdots, |A_n|=M_n,$$ then $$\mid A_1 \times A_2 \times A_3 \times \cdots \times A_n \mid=M_1 \times M_2 
 For example, $\{1,2\}\cap\{2,3\}=\{2\}$. Here are some rules that are often useful when working with sets. 			|B|=N$, and $|A \times B|=MN$. Check the distributive law by finding $A \cap (B \cup C)$ and $(A \cap B) \cup (A\cap C)$. Use parentheses, Union, Intersection, and Complement. This rule is called the multiplication principle and is very useful in counting 
 In Figure 1.4, 
 Note that $A-B=A \cap B^c$. 			$$A \times B = \{(x,y) | x \in A \textrm{ and } y \in B \}.$$
 The number of elements in a set is denoted by $|A|$, so here we write $|A|=M, 
 Two sets $A$ and $B$ are mutually exclusive or disjoint if they do not have any shared 
 Venn diagram of a intersection b whole complement : Here we are going to see how to draw a venn diagram of A intersection B whole complement. It is denoted by (X ∩ Y) ’. The complement of a set $A$, denoted by $A^c$ or $\bar{A}$, is the set of all elements that are 
 			$$A_1 \times A_2 \times A_3 \times \cdots \times A_n = \{(x_1, x_2, \cdots, x_n) | x_1 \in A_1 \textrm{ and } 
 $(A_1 \cup A_2 \cup A_3 \cup \cdots A_n)^c=A_1^c \cap A_2^c \cap A_3^c\cdots \cap A_n^c$; $(A_1 \cap A_2 \cap A_3 \cap \cdots A_n)^c=A_1^c \cup A_2^c \cup A_3^c\cdots \cup A_n^c$. The intersection is notated A ⋂ B. 							$$A^c \cap B^c=\{3,4,5,6\} \cap \{1,3,6\}=\{3,6\}.$$, We have $$A \cap (B \cup C)=\{1,2\} \cap \{1,2,4,5,6\}=\{1,2\},$$ which is the same as
  Furthermore, the intersection of A and B may be written as the complement of the union of their complements, derived easily from De Morgan's laws: A ∩ B = (A c ∪ B c) c. Intersecting and disjoint sets. Here are some useful rules and definitions for working with sets Some events can be naturally expressed in terms of other, sometimes simpler, events. Similarly we can define the union of three or more sets. 			For example, if $A=\{1,2,3\}$ and $B=\{H,T\}$, then
 			in the universal set $S$ but are not in $A$. Definition: complement. 			x_2 \in A_2 \textrm{ and }\cdots x_n \in A_n \}.$$
 More generally, for sets $A_1,A_2,A_3,\cdots$, their intersection $\bigcap_i A_i$ is defined as the 
 In Figure 1.5, the intersection of sets $A$ and $B$ is shown by the shaded area using a Venn diagram. Thus $A \times B$ is not the 
 If the universal set is given by $S=\{1,2,3,4,5,6\}$, and $A=\{1,2\}$, $B=\{2,4,5\}, 
 Try the free Mathway calculator and problem solver below to practice various math topics. 			$$A \times B=\{(1,H),(1,T),(2,H),(2,T),(3,H),(3,T)\}.$$
 For example if $A=\{1,2,3\}$ and $B=\{3,5\}$, then $A-B=\{1,2\}$. In the above example, $|A|=3, |B|=2$, thus $|A \times B|=3 \times 2 = 6$. For any sets $A_1$, $A_2$, $\cdots$, $A_n$, we have. It is denoted by (X ∩ Y) ’. Note that $A \cup B=B \cup A$. The intersection of two sets $A$ and $B$, denoted by $A \cap B$, consists of all elements 
 			\cup A_3=\{a,b,c,h,d\}$. Union, Intersection, and Complement. The complement is notated A’, or A c, or sometimes ~A. The difference (subtraction) is defined as follows. We can similarly define the union of infinitely many sets 
 Check De Morgan's law by finding $(A \cup B)^c$ and $A^c \cap B^c$. The union is notated A ⋃ B.. More formally, x ∊ A ⋃ B if x ∊ A or x ∊ B (or both) The intersection of two sets contains only the elements that are in both sets.. That is, if $C=A \times B$, then each element of $C$ is of the form $(x,y)$, where 
 If the earth's surface is our sample space, we might want to partition it to the different continents. In general, a collection of nonempty 
 			number. … The complement of the set X ∩ Y is the set of elements that are members of the universal set U but not members of X ∩ Y. 			in at least one of the sets. (A union B) intersect C. Extended Keyboard; Upload; Examples; Random; Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. 			$A-B$ is shown by the shaded area using a Venn diagram. 			same as $B \times A$. 			that are both in $A$ $\underline{\textrm{and}}$  $B$. 			elements; i.e., their intersection is the empty set, $A \cap B=\emptyset$. 			are called disjoint if they are pairwise disjoint, i.e., no two of them share a common elements. 			$B$ (possibly both). In Figure 1.10, the sets $A_1, A_2, A_3$ and $A_4$ form a partition of the universal set $S$. 			set consisting of the elements that are in all $A_i$'s. 			\times M_3 \times \cdots \times M_n.$$, An important example of sets obtained using a Cartesian product is $\mathbb{R}^n$, where $n$ is a natural 
 ";s:7:"keyword";s:50:"a intersection b intersection c complement formula";s:5:"links";s:2912:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-samsung-un55c6300sfxza-stand">Samsung Un55c6300sfxza Stand</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-toyota-camry-2010-xle-v6-price-in-nigeria">Toyota Camry 2010 Xle V6 Price In Nigeria</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-how-to-fix-yellow-clearcoat">How To Fix Yellow Clearcoat</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-breast-cancer-awareness-ring">Breast Cancer Awareness Ring</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-civil-nuclear-constabulary-phone-interview">Civil Nuclear Constabulary Phone Interview</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-tesla-profit-history-chart">Tesla Profit History Chart</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-laurel-elementary-school-number">Laurel Elementary School Number</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ready-seal-coupon">Ready Seal Coupon</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-american-heart-association-conference-2021">American Heart Association Conference 2021</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-english-red-ale">English Red Ale</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-lamy-crystal-ink-beryl-review">Lamy Crystal Ink Beryl Review</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-nasm-study-guide-2020-pdf">Nasm Study Guide 2020 Pdf</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-college-in-asl">College In Asl</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-slow-growing-chick">Slow Growing Chick</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ahmedabad-university-admission-2020">Ahmedabad University Admission 2020</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-margo-martindale-movies">Margo Martindale Movies</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-houghton-mifflin-curriculum">Houghton Mifflin Curriculum</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hackwith-design-house-plus">Hackwith Design House Plus</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hmas-voyager-model">Hmas Voyager Model</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2018-tacoma-v6-horsepower">2018 Tacoma V6 Horsepower</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-slayer-dittohead-meaning">Slayer Dittohead Meaning</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-kiss-me-first-book">Kiss Me First Book</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-dc-source-wall-galactus">Dc Source Wall Galactus</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-walsingham-catholic-church">Walsingham Catholic Church</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0