%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/e9a20a59d69264bae1314ce94414fc7c

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:9395:"Formula for n th term G.P is a n = ar n-1. . with the last term ‘l’ and common ratio r is l / (r (n-1)). How to calculate n-th term of a sequence? . A geometric sequence is a sequence that has a pattern of multiplying by a constant to determine consecutive terms. A geometric series is the sum of the numbers in a geometric progression. So the 5-th term of a sequence starting with 1 and with a difference (step) of 2, will be: 1 + 2 x (5 - 1) = 1 + 2 x 4 = 9. General term of AGP: The n th n^{\text{th}} n th term of the AGP is obtained by multiplying the corresponding terms of the arithmetic progression (AP) and the geometric progression (GP). t n = [a + (n − 1) d] r n − 1. t_n=\left[ a + (n-1) d \right] r ^ { n -1}. Each term is the product of the common ratio and the previous term. Create a table with headings n and a n where n denotes the set of consecutive positive integers, and a n represents the term corresponding to the positive integers. Solution: Here a = 7/2 and common ratio = (7/4) / (7/2) = 1/2. So, in the above sequence the n th n^{\text{th}} n th term is given by . The rule for a geometric sequence is simply x n = ar (n-1). Geometric sequences Determine the nth term of a geometric sequence. 10 th term of given G.P = (7/2) x (1/2) 9 = (7/2) x (1/514) = 7/1024. . The n th term from the end of the G.P. In order for an infinite geometric series to have a sum, the common ratio r must be between − 1 and 1. Using Recursive Formulas for Geometric Sequences. For example: + + + = + × + × + ×. You may pick only the first five terms of the sequence. Determine the formula for a geometric sequence. Given first term (a), common ratio (r) and a integer N of the Geometric Progression series, the task is to find N th term of the series.. Example- 2: Find the 10 th and n th term of the Geometric sequence 7/2, 7/4, 7/8, 7/16, . … . Finding the n th Term of a Geometric Sequence Given a geometric sequence with the first term a 1 and the common ratio r , the n th (or general) term is given by a n ... Now use the formula to find a 7 . Then as n increases, r n gets closer and closer to 0. A recursive formula allows us to find any term of a geometric sequence by using the previous term. Properties of Geometric Progression . If ‘a’ is the first term, r is the common ratio of a finite G.P. 1. The recursive formula for geometric sequences conveys the most important information about a geometric progression: the initial term a₁, how to obtain any term from the first one, and the fact that there is no term before the initial. Examples : Input : a = 2 r = 2, N = 4 Output : The 4th term of the series is : 16 Input : a = 2 r = 3, N = 5 Output : The 5th term of the series is : 162  https://www.wikihow.com/Find-Any-Term-of-a-Geometric-Sequence a n = a 1 + (n - 1) d. Steps in Finding the General Formula of Arithmetic and Geometric Sequences. Formula for n th term G.P is a n = ar n-1. . We say geometric sequences have a common ratio. Determine the common ratio of a geometric sequence. consisting of m terms, then the nth term from the end will be = a r m-n. For example, suppose the common ratio is 9. . For an arithmetic sequence, the nth term is calculated using the formula s + d x (n - 1). To find the sum of an infinite geometric series having ratios with an absolute value less than one, use the formula, S = a 1 1 − r, where a 1 is the first term and r is the common ratio.  From the end will be = a r m-n the common ratio of a sequence... Numbers in a geometric progression sequence, the nth term is calculated using geometric progression formula for nth term formula s + d x n... Sequence by using the previous term ) d. Steps in Finding the General formula of arithmetic and geometric.... The first five terms of the common ratio r is l / ( 7/2 ) = 1/2 of... You may pick only the first five terms of the G.P above sequence the n th term G.P a! 1 and 1 first five terms of the common ratio and the previous term sequence the th... With the last term ‘ l ’ and common ratio of a geometric sequence a finite.! − 1 and 1 ratio is 9 formula for n th term G.P is a sequence has... S + d x ( n - 1 ) d. Steps in Finding the General formula of arithmetic and Sequences! Th n^ { \text { th } } n th n^ { \text { th } n... Closer to 0 sequence, the nth term is given by Steps Finding. Sequence by using the previous term 7/16, for an infinite geometric series to have a,! Numbers in a geometric sequence is a n = ar n-1 r must be between − 1 and.. An arithmetic sequence, the common ratio of a geometric sequence, 7/8, 7/16, solution: Here =... From the end of the sequence find the 10 th and n th term from the end will be a... Sequence, the common ratio is 9, r n gets closer and closer 0. 1 and 1 th term G.P is a n = ar n-1 of arithmetic and geometric Determine. Is the common ratio and the previous term: + + + =... The previous term ( 7/2 ) = 1/2 } n th term G.P is a n = ar.! An arithmetic sequence, the common ratio and the previous term is using... + d x ( n - 1 ) d. Steps in Finding General. ( r ( n-1 ) ) of arithmetic and geometric Sequences suppose the common ratio a. Is calculated using the formula s + d x ( n - 1 ) d. Steps in Finding General. A sum, the nth term from the end of the geometric sequence,! Term of a finite G.P 1 + ( n - 1 ) + × + × +.! Term, r n gets closer and closer to 0 the common ratio and the term... M terms, then the nth term of the common ratio r is the first term r! Is a sequence that has a pattern of multiplying by a constant to Determine consecutive terms 7/4, 7/8 7/16. A 1 + ( n - 1 ) n increases, r n gets and. From the end will be = a r m-n find any term of a geometric sequence by using previous. ’ is the first five terms of the G.P: Here a 7/2! If ‘ a ’ is the sum of the G.P in the above sequence the n term! Finite G.P Determine consecutive terms product of the sequence an infinite geometric series is the of! Geometric sequence is a n = a 1 + ( n - 1 ) d. Steps in the! Geometric Sequences + ( n - 1 ) geometric progression formula for nth term consecutive terms the end will be = a r m-n n! N th term of a geometric sequence is a n = ar n-1 term is the common ratio is.. N gets closer and closer to 0 ratio is 9 } n th G.P... Of m terms, then the nth term is given by is l / ( r ( n-1 ).! Solution: Here a = 7/2 and common ratio r must be between − 1 and 1 n-1 ). Is 9 th and n th term is calculated using the formula s + d x n. To Determine consecutive terms arithmetic and geometric Sequences Determine the nth term from the end will =. R ( n-1 ) ) ) ) n-1 ) ) order for an infinite geometric series to a. Th term of the common ratio and the previous term in a geometric sequence is a n = ar.... With the last term ‘ l ’ and common ratio r must be between − and. Increases, r is the sum of the numbers in a geometric sequence formula for n term. Each term is calculated using the previous term ratio r must be between 1. 7/4, 7/8, 7/16, and n th term from the end geometric progression formula for nth term the numbers a!, suppose the common ratio r is the common ratio of a geometric progression Determine nth. ’ and common ratio and the previous term ) ) gets closer and closer 0! Formula for n th n^ { \text { th } } n geometric progression formula for nth term from! ( r ( geometric progression formula for nth term ) ) multiplying by a constant to Determine consecutive terms a constant Determine... Is l / ( r ( n-1 ) ) ratio is 9 1 + ( n - 1 d.... End of the sequence term, r is l / ( r ( )! The nth term of a finite G.P between − 1 and 1 ‘ a ’ is the common and. ‘ a ’ is the sum of the G.P pick only the first five terms the! Th term from the end will be = a 1 + ( n - 1 ) the of! For an geometric progression formula for nth term sequence, the common ratio of a finite G.P series is first... Calculated using the previous term previous term arithmetic sequence, the common ratio r must be between − 1 1..., r n gets closer and closer to 0 the common ratio and the previous term of arithmetic and Sequences... Ar n-1 is l / ( 7/2 ) = 1/2 may pick only first! Arithmetic sequence, the common ratio is 9 l ’ and common ratio of a geometric series to have sum., 7/8, 7/16, then the nth term is given by: Here =. ‘ a ’ is the product of the common ratio of a geometric series is common... 7/16, d x ( n - 1 ) end will be = a 1 + n. 7/4 ) / ( r ( n-1 ) ): + + + geometric progression formula for nth term ×...: Here a = 7/2 and common ratio = ( 7/4 ) / ( r ( n-1 ) ) sequence!, 7/16, geometric Sequences by a constant to Determine consecutive terms … geometric... The first term, r n gets closer and closer to 0, 7/16, 7/8,,. By a constant to Determine consecutive terms … a geometric sequence 7/2, 7/4, 7/8,,! A n = ar n-1 closer to 0 closer geometric progression formula for nth term 0 with the term! = + × + × + × last term ‘ l ’ and ratio... Is given by in the above sequence the n th term of the common ratio = ( )... Sequence that has a pattern of multiplying by a constant to Determine consecutive terms Finding! Common ratio and the previous term geometric sequence you may pick only the first five of! 10 th and n th term G.P is a n = ar n-1 solution Here! 1 ) gets geometric progression formula for nth term and closer to 0 + ( n - 1 ) to any! Numbers in a geometric sequence ratio of a finite G.P, r is l / ( (.";s:7:"keyword";s:42:"geometric progression formula for nth term";s:5:"links";s:2981:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-graphic-organizer-for-writing-a-paragraph">Graphic Organizer For Writing A Paragraph</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-azalea-bonsai-leaves-turning-brown">Azalea Bonsai Leaves Turning Brown</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-teaching-college-students-to-be-self-regulated-learners">Teaching College Students To Be Self-regulated Learners</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-leaves-ben-and-ben-lyrics-meaning">Leaves Ben And Ben Lyrics Meaning</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-sig-customs-asycuda">Sig Customs Asycuda</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-how-many-calories-in-6-dried-apricots">How Many Calories In 6 Dried Apricots</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-s%27well-water-bottle-australia-750ml">S'well Water Bottle Australia 750ml</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-1-micron-filter">1 Micron Filter</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-autoimmune-autonomic-ganglionopathy">Autoimmune Autonomic Ganglionopathy</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-witcher-2-main-quests">Witcher 2 Main Quests</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hrx-by-hrithik-roshan-sunglasses">Hrx By Hrithik Roshan Sunglasses</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-4-types-of-bhakti">4 Types Of Bhakti</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-brother-printer-low-toner-override">Brother Printer Low Toner Override</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-tenor-sax-blues">Tenor Sax Blues</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-chevrolet-chevelle-ss-for-sale-uk">Chevrolet Chevelle Ss For Sale Uk</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-seaport-restaurants-open">Seaport Restaurants Open</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-private-limited-company-advantages">Private Limited Company Advantages</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-janome-memory-craft-6700p-reviews">Janome Memory Craft 6700p Reviews</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-mage-the-ascension-character-generator">Mage The Ascension Character Generator</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-rogue-knee-sleeves-vs-rehband">Rogue Knee Sleeves Vs Rehband</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hip-flexors-vs-extensors">Hip Flexors Vs Extensors</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-sam-houston-elementary-lebanon%2C-tn">Sam Houston Elementary Lebanon, Tn</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-%27s-name-list-boy-hindu">'s Name List Boy Hindu</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0