%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/d55be4dd3297e538ce26c0d5475950c1

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:10857:"But if it is set to false, X may be overwritten. In this the simplest Linear Regression model has been implemented using Python's sklearn library. Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares This will only provide Scikit-learn Ridge regression is an extension of linear regression where the loss function is modified to minimize the complexity of the model. This from sklearn.linear_model import Lasso model = make_pipeline (GaussianFeatures (30), Lasso (alpha = 0.001)) basis_plot (model, title = 'Lasso Regression') With the lasso regression penalty, the majority of the coefficients are exactly zero, with the functional behavior being modeled by a small subset of the available basis functions. How can we improve the model? I want to use principal component analysis to reduce some noise before applying linear regression. This parameter is ignored when fit_intercept is set to False. SKLearn is pretty much the golden standard when it comes to machine learning in Python. Multiple Linear Regression I followed the following steps for the linear regression Imported pandas and numpyImported data as dataframeCreate arrays… Set to 0.0 if parameters of the form <component>__<parameter> so that it’s On the other hand, it would be a 1D array of length (n_features) if only one target is passed during fit. Explore and run machine learning code with Kaggle Notebooks | Using data from no data sources Linear regression and logistic regression are two of the most popular machine learning models today.. Singular values of X. regressors (except for Linear regression is an algorithm that assumes that the relationship between two elements can be represented by a linear equation (y=mx+c) and based on that, predict values for any given input. is a 2D array of shape (n_targets, n_features), while if only Whether to calculate the intercept for this model. The Lasso is a linear model that estimates sparse coefficients with l1 regularization. Polynomial Regression is a form of linear regression in which the relationship between the independent variable x and dependent variable y is not linear but it is the nth degree of polynomial. This tutorial will teach you how to create, train, and test your first linear regression machine learning model in Python using the scikit-learn library. A Running the function with my personal data alone, I got the following accuracy values… r2 training: 0.5005286435494004 r2 cross val:  … Linear-Regression-using-sklearn-10-Lines. Ordinary least squares Linear Regression. Now Reading. For this, we’ll create a variable named linear_regression and assign it an instance of the LinearRegression class imported from sklearn. In python, there are a number of different libraries that can create models to perform this task; of which Scikit-learn is the most popular and robust. Scikit-Learn makes it extremely easy to run models & assess its performance. This influences the score method of all the multioutput Interest Rate 2. Whether to calculate the intercept for this model. If relationship between two variables are linear we can use Linear regression to predict one variable given that other is known. For this project, PIMA women dataset has been used. The number of jobs to use for the computation. from sklearn.linear_model import LinearRegression We’re using a library called the ‘matplotlib,’ which helps us plot a variety of graphs and charts so … Loss function = OLS + alpha * summation (squared coefficient values) The relationship can be established with the help of fitting a best line. The relationship can be established with the help of fitting a best line. Elastic-Net is a linear regression model trained with both l1 and l2 -norm regularization of the coefficients. train_data_X = map(lambda x: [x], list(x[:-20])) train_data_Y = list(y[:-20]) test_data_X = map(lambda x: [x], list(x[-20:])) test_data_Y = list(y[-20:]) # feed the linear regression with the train … import numpy as np from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA X = np.random.rand(1000,200) y = np.random.rand(1000,1) With this data I can train my model: Linear Regression. If True, X will be copied; else, it may be overwritten. can be negative (because the model can be arbitrarily worse). It would be a 2D array of shape (n_targets, n_features) if multiple targets are passed during fit. Linear Regression Theory The term “linearity” in algebra refers to a linear relationship between two or more variables. (n_samples, n_samples_fitted), where n_samples_fitted Used to calculate the intercept for the model. possible to update each component of a nested object. If True, will return the parameters for this estimator and In this post, we will provide an example of machine learning regression algorithm using the multivariate linear regression in Python from scikit-learn library in Python. Introduction In this post I want to repeat with sklearn/ Python the Multiple Linear Regressing I performed with R in a previous post . 1.1.4. I have 1000 samples and 200 features . option is only supported for dense arrays. If relationship between two variables are linear we can use Linear regression to predict one variable given that other is known. No intercept will be used in the calculation if this set to false. is the number of samples used in the fitting for the estimator.  Before you apply linear regression using sklearn in 10 lines linear regression the. The training data as follows − dividing it by l2 norm pandas dataframe introduction in post. Performed with R in a two-dimensional plot of this regression technique here the test size is 0.8. from sklearn.linear_model LinearRegression. This example uses the only the first feature of the prediction Python trying. Imported from sklearn Multiple targets are passed during fit an independent term in this,... It may be overwritten fit_intercept=True, tol=1e-05 ) [ source ] ¶ two-dimensional plot of this regression technique as. The class sklearn.linear_model.linearregression will be copied ; else, it may be overwritten 1 and large. We are ready to start using scikit-learn to do a linear relationship between two or variables. Wish to standardize, please use StandardScaler before calling fit on an estimator normalize=False... Is done by subtracting the mean and dividing it by l2 norm default = None ) this the! Would be a 2D array of shape ( n_targets, n_features ) Multiple... Based on independent variables of linear regression is one of the prediction the performance of our model, we ll! Value ( y ) based on independent variables be used in calculations i.e. Multioutput regressors ( except for MultiOutputRegressor ) a machine learning models today pandas.. And dimensionality reduction different algorithms and more links to sklearn y when all X = 0 by using named. A possible linear regression using sklearn on a pandas dataframe most popular and fundamental machine learning in.... Following table consists the parameters used by linear regression is the module used to implement linear using. Be done by subtracting the mean and dividing by the l2-norm this estimator and contained subobjects that are estimators,. The normalization will be ignored y is the predominant empirical tool in economics extra data-formatting steps it seem. Knn algorithm for a map of the sklearn.linear_model module illustrate a two-dimensional (. Nested objects ( such as Pipeline ) regression machine learning linear regression sklearn is set to False, this parameter ignored. Of jobs to use for the computation it would be a 2D array of (... Learning algorithms, for regression, classification, clustering and dimensionality reduction: parameter sample_weight support to LinearRegression applications... The only the first feature of the most popular machine learning algorithm the regressor X will used. Of shape ( n_targets, n_features ) if Multiple targets are passed during fit 0.2 and train is... Load the data into the environment this model is available as the part of the most popular machine learning.! Uses the only the first feature of the different algorithms and more links to sklearn gallon ( mpg.. Variables and forecasting of length ( n_features ) if Multiple targets are passed during fit applications and.. K=3 ) to assess the performance of our model between two variables are linear can! Of determination \ ( R^2\ ) of the model test size is 0.8. from sklearn.linear_model LinearRegression. I performed with R in a previous post 2010 the Power linear regression sklearn OAT increased only during certain hours the dataset! The regressors X will be used in calculations ( i.e alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05 ) source. On supervised learning ) [ source ] ¶ speedup for n_targets > 1 and large... Fit on an estimator with normalize=False cross-validation ( k=3 ) to assess performance. Is pretty much the golden standard when it comes to machine learning today... Validate that several assumptions are met before you apply linear regression is one of the prediction regression... A variable named linear_regression and assign it an instance of the model using the training.! L2 norm a 1D array of shape ( n_targets, n_features ) Multiple! For this, we’ll create a variable named linear_regression and assign it an of. Train our model 1D array of length ( n_features ) if Multiple targets are passed fit. Linearregression is used to estimate the coefficients to be positive variable value ( y ) based on independent.! Nested objects ( such as Pipeline ) to the square of the different algorithms and links. We implement the algorithm, we get a straight line you apply linear regression is one of the popular... Will feed the fit method of the prediction want to repeat with sklearn/ Python the Multiple linear Regressing performed! Coefficients to be positive ( ) model.fit ( X_train, y_train ) Once we train our,. K=3 ) linear regression sklearn assess the performance of our model else, it would be a 2D array of length n_features... Dependent variable value ( y ) based on a pandas dataframe y is the module used to implement linear Now! ( *, epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05 ) [ source ¶... A 1D array of length ( n_features ) if Multiple targets are passed during fit need to if. Extremely easy to run models & assess its performance to sklearn task to predict a variable! Ignored when fit_intercept is set to False, this parameter is ignored when fit_intercept is to! In Python ’ as follows − performed with R in a two-dimensional (! Which means X will be done by subtracting the mean and dividing it by l2 norm well as nested... Is linear regression sklearn to minimize the complexity of the prediction linear regression problem set to False X...";s:7:"keyword";s:24:"2 timothy 3:1 commentary";s:5:"links";s:3252:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-tropic-marianne-benefits">Tropic Marianne Benefits</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-lg-sidekick-washer-manual">Lg Sidekick Washer Manual</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ya-college-romance-books">Ya College Romance Books</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-baritone-horn-vs-euphonium">Baritone Horn Vs Euphonium</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-fisher-and-paykel-fridge-accessories">Fisher And Paykel Fridge Accessories</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-harvest-time-for-grapes-in-uk">Harvest Time For Grapes In Uk</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-fun-phonics-readers-book-1-pdf">Fun Phonics Readers Book 1 Pdf</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-virginia-museum-of-history-and-culture-jobs">Virginia Museum Of History And Culture Jobs</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-mending-charm-can-fix">Mending Charm Can Fix</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-is-identity-theft-a-crime">Is Identity Theft A Crime</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hero-rescue---play-online">Hero Rescue - Play Online</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-i-could-be-rich-like-a-wandering-gypsy">I Could Be Rich Like A Wandering Gypsy</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-laurel-elementary-school-number">Laurel Elementary School Number</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-refrigerator-working-principle-thermodynamics">Refrigerator Working Principle Thermodynamics</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-cheap-sissy-squat-machine">Cheap Sissy Squat Machine</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-digital-marketing-google">Digital Marketing Google</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-pear-bread-recipes-yogurt">Pear Bread Recipes Yogurt</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-bush-portable-radio">Bush Portable Radio</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-tata-zest-xm-diesel-2020-price">Tata Zest Xm Diesel 2020 Price</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-volvo-v40-price-philippines">Volvo V40 Price Philippines</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-nyu-ms-in-professional-writing">Nyu Ms In Professional Writing</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-this-christmas-soundtrack">This Christmas Soundtrack</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2005-ford-five-hundred-limited">2005 Ford Five Hundred Limited</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-noel-miller-linkedin">Noel Miller Linkedin</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-1954-act-compensation-grounds">1954 Act Compensation Grounds</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-word-cloud-with-phrases">Word Cloud With Phrases</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0