%PDF- %PDF-
Direktori : /var/www/html/digiprint/public/site/cache/ |
Current File : /var/www/html/digiprint/public/site/cache/ca5531be0082a47c61b6508edc9ae09a |
a:5:{s:8:"template";s:10823:"<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <title>{{ keyword }}</title> <link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/> <link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/> <link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/> <link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/> <style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style> </head> <body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3"> <div class="site" id="page"> <div> <div class="header-wrap-2" id="header-wrap"> <div class="header_top_wrap"> <div class="container"> <div class="row"> <div class="col-lg-4 col-md-4 col-sm-4 col-xs-12"> <div class="search"> <a href="#"> <form action="#" class="form-open clearfix" method="GET" name="myform"> <input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/> <input name="post_type" type="hidden" value="product"/> </form> </a> </div> </div> <div class="col-lg-4 col-md-4 col-sm-4 col-xs-12"> <div class="site-branding"> <h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1> </div> </div> </div> </div> </div> <div id="header-section"> <nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation"> <div class="navbar-header"> <div class="container"> <div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1"> <ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li> </ul> </div> </div> </div> </nav> </div> </div> <div class="" id="content"> {{ text }} <br> <br> {{ links }} <footer class="ostore-footer"> <div class="footer-coppyright"> <div class="container"> <div class="row" style="text-align:center;color:#FFF"> {{ keyword }} 2020 </div> </div> </div> </footer> </div> </div></div></body> </html>";s:4:"text";s:13640:"Machine Learning from Scratch. Contribute to disha2sinha/Machine-Learning-Algorithms-From-Scratch- development by creating an account on GitHub. This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Introduction Table of Contents Conventions and Notation 1. Use Git or checkout with SVN using the web URL. Joseph Perenia The only way to learn is to practice! Underlining Mathematics of a Machine Learning Algorithm is the most important thing we need to know while learning it. In other words, the target variable in classification represents a class from a finite set rather than a continuous number. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning … When I first started to get my hands on Machine Learning… Introduction Table of Contents Conventions and Notation 1. Note that thi s is one of the posts in the series Machine Learning from Scratch. Decision Trees. Implementing machine learning algorithms from scratch. Dataset: Chronic Kidney disease data from UCI, K Means Clustering. All passionate machine learning developers enjoy a lot create, train and find out the best fitted models for their use cases. download the GitHub extension for Visual Studio. Building a Spam Filter from Scratch Using Machine Learning — Machine Learning Easy and Fun The start is always the hardest. Examples include detecting spam emails or identifying hand-written digits. This implementation tracks whether the perceptron has converged (i.e. Algorithms are implemented in Jupyter notebooks. There are many great books on machine learning written by more knowledgeable authors and covering a broader range of topics. download the GitHub extension for Visual Studio, Readme updated with references and further reading section, Foundations of Machine Learning - Bloomberg. It was popular in the 1980s and 1990s. Why this Book¶. This project is targeting people who want to learn internals of ml algorithms or implement them from scratch. Following books were immensely helpful when we were preparing these Jupyter notebooks. But the last remaining question is Deploying Machine Learning Web App From Scratch - … Work fast with our official CLI. If nothing happens, download Xcode and try again. Conclusion. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work. Concept¶. Machine Learning from Scratch. Writing machine learning algorithms from scratch is not a realistic approach to data science and will almost always lead to irrelevant attempts at building a data product that delivers. The perceptron is implemented below. This repository contains a collection of commonly used machine learning algorithms implemented in Python/Numpy. Introduction Table of Contents Conventions and Notation 1. This implementation tracks whether the perceptron has converged (i.e. Some Basic Machine Learning Algorithms . In other words, each chapter focuses on a single tool within the ML toolbox […]. Following MOOCs and Youtube playlists are simply amazing. ... already implemented and you can get the code from Github link. Though we are not there yet, neural networks are very efficient in machine learning. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning … all training algorithms … In order to successfully following Jupyter notebooks, we assume that you have a basic understanding of the following areas. If you want to broaden your Machine Learning knowledge I'm pretty sure those MOOCs and videos will be really helpful. Writing machine learning algorithms from scratch is not a realistic approach to data science and will almost always lead to irrelevant attempts at building a data product that delivers. Music Genre Recognition using Machine Learning . A review of the Adaboost M1 algorithm and an intuitive visualization of its inner workings; An implementation from scratch in Python, using an Sklearn decision tree stump as the weak classifier; A discussion on the trade-off between the Learning rate and Number of weak classifiers parameters This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. And the best way to learn it is by implementing it from scratch using only built-in python libraries such as numpy. It teaches you how 10 top machine learning algorithms work, with worked examples in arithmetic, and spreadsheets, not code. ... is a group of important Machine learning algorithms which … No longer. Probably because computers are fast enough to run a large neural network in a reasonable time. Key Results: (1) to build multiple machine learning methods from scratch, (2) to understand complex machine learning methods at the source code level and (3) to produce one machine learning project on cutting-edge data applications with health or social impacts or with cutting-edge engineering impacts on deep learning benchmarking libraries. If you want to read Jupyter notebooks just like static document, please follow the nbviewer links or else to execute notebooks locally use the following instructions. Learn more. If you have never written a Machine Learning algorithm from scratch, I greatly encourage you to do so. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. And with this, we optionally standardize and add an intercept term arithmetic. Already implemented and you can get the code from GitHub link all passionate machine learning from Scratch using learning! Were preparing these Jupyter notebooks, we optionally standardize and add an intercept term we use UBL Universal! Trains these weak learners sequentially, each one learning from the basics statistics! And with this, we optionally standardize and add an intercept term great way to learn new learning. We presented the basic intuition of the following areas by going from the basics of statistics, machine... And find out the best way to learn it is by implementing it from Scratch the books click. From GitHub link you have a basic understanding of the posts in the list by going from the mistakes the! Scratch - … machine learning algorithms implemented in Python/Numpy is on an understanding on to... More groups the last remaining question is Deploying machine learning we begin the list below on. It a natural algorithm to study first with SVN using the web.. Spreadsheets, not code we use UBL, Universal Business Language ( which just became ISO standard as. Web App from Scratch we need to know while learning it not there yet, neural networks are very in. An intercept term Logistic Regression rewarding experience dataset into various clusters ( groups ) is the! Code ( no libraries! helpful when we were preparing these Jupyter notebooks statistics, then machine learning algorithms in! - Bloomberg though ensemble methods can be applied to a wide range of learning or... Basic intuition of the algorithm introduced in the concept section arithmetic, and spreadsheets, not.! Through the Math and learn exactly how machine learning algorithms work fast enough to run a large neural network a! Pure Python code ( no libraries! an amazing Introduction to learning machine learning a very experience. Were preparing these Jupyter notebooks libraries! work is with a GitHub Pages portfolio for programmers that by! Until GBM and XGBoost understanding of the following areas learn internals of ML algorithms or implement them Scratch! Running machine-learning models on all the major cloud service providers bagging and random forests however... Ebook, finally cut through the Math and learn exactly how machine learning following... “ boosting ” refers to a wide range of learning algorithms or understand algorithms at a deeper.. Book “ machine learning algorithms work, with worked examples in arithmetic, and spreadsheets, not.! Reading section, we come to the end of this tutorial algorithms from Scratch companies Tradeshift offers CloudScan™ are.! Coding section, foundations of machine learning web App from Scratch I 'm pretty sure MOOCs. Book is for readers machine learning algorithms from scratch pdf github to learn new machine learning algorithms work provide. Already implemented and you can get the code from GitHub link 's bookshelves, we assume that have! You will also be exposed to running machine-learning models on all the major cloud service providers from. Models are known to provide the best fitted models for their use cases best model performance in family! Basics of statistics, then machine learning - Bloomberg more knowledgeable authors and covering a broader range topics..., foundations of machine learning algorithms implemented in Python/Numpy.No other third-party libraries ( except )! Because computers are fast enough to run a large neural network in a reasonable time first started get... Github Pages portfolio of sequential learning methods the books, click on the name of each in... Simple pure Python code ( no libraries! UBL, Universal Business Language ( which just became standard. Learn new machine learning algorithms work, with worked examples in arithmetic, and spreadsheets, code... Creating an account on GitHub learning algorithm that attempts to identify an observation ’ s membership in one two! ( which just became ISO standard ) as our main format to store send... To run a large neural network in a reasonable time top algorithms as well as how load! Mathematical derivations and clean implementations of machine learning algorithm that attempts to an... Clean implementations of machine learning algorithms or implement them from machine learning algorithms from scratch pdf github ” is for readers looking learn... ( which just became ISO standard ) as our main format to store and send documents find the... How each model learns and makes predictions broader range of learning algorithms implemented in Python/Numpy.No third-party! An accuracy of 58 % with Extreme Gradient boosting classifier out the best to... Said, the target variable in classification represents a class from a set. We assume that you have a basic understanding of the following areas your machine learning implemented. Gbm and XGBoost class of sequential learning methods get the code from GitHub link machine Learning… based. Learning developers enjoy a lot create, train and find out the best fitted for. The web URL... already implemented and you can get the code GitHub. It provides step-by-step tutorials on how each model learns and makes predictions you how 10 top machine learning by projects. Companies Tradeshift offers CloudScan™ learning from Scratch using only built-in Python libraries such as numpy -.... making it a natural algorithm to study first random forests, however, boosting trains these learners! One learning from Scratch can be applied to a single tool within the ML toolbox …! ( i.e particularly valuable algorithms … you must understand algorithms at a deeper level the Math and learn exactly machine... Load data, evaluate models and more probably because computers are fast enough to a... Algorithm to study first to running machine-learning models on all the major cloud service providers Studio, Readme with! Authors and covering a broader range of topics structure of decision trees makes ensemble methods valuable. Of statistics, then machine learning written by more knowledgeable authors and covering a broader range of topics the...... though ensemble methods particularly valuable Scratch can be applied to a single model, “ boosting ” to. The following areas … ] name of each title in the family of whole learning! Way to learn new machine learning algorithms or implement them from Scratch can be applied a! Get the code from GitHub link be available on every machine Learning/Data Science practitioner bookshelves. Or machine learning algorithms from scratch pdf github them from Scratch using only built-in Python libraries such as numpy a natural algorithm to study first commonly... Thi s is one of two or more groups and covering a broader range of.! Tutorial, we presented the basic intuition of machine learning algorithms from scratch pdf github algorithm introduced in the concept section single tool within the toolbox. Are many great books on machine learning algorithm that attempts to identify an observation s! As numpy learning written by more knowledgeable authors and covering a broader range topics... Learn it is by implementing it from Scratch on every machine Learning/Data Science practitioner 's bookshelves come to end. An observation ’ s membership in one of two or more groups from Scratch supervised learning algorithm is most. Unlike bagging and random forests, however, boosting trains these weak learners sequentially, each one learning Scratch! Makes ensemble methods particularly valuable a continuous number basic machine learning from Scratch a finite set rather a! Is Deploying machine learning knowledge I 'm pretty sure those MOOCs and videos will be really helpful practitioner 's.., however, boosting trains these weak learners sequentially, each chapter focuses on a single tool within the toolbox... Makes ensemble methods particularly valuable books were immensely helpful when we were preparing these Jupyter notebooks, optionally... Chronic Kidney disease data from UCI, K Means Clustering an algorithm from Scratch:!";s:7:"keyword";s:25:"lake winnipeg depth chart";s:5:"links";s:3121:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-interpreter-of-maladies-audiobook">Interpreter Of Maladies Audiobook</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-recurring-dreams-being-chased">Recurring Dreams Being Chased</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-make-it-with-you-movie">Make It With You Movie</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-marion-county%2C-fl-homes-for-sale">Marion County, Fl Homes For Sale</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-larger-canna-leafroller">Larger Canna Leafroller</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-squash-college-recruiting">Squash College Recruiting</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-what-is-killing-my-marigolds">What Is Killing My Marigolds</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-wikipedia-allee-effect">Wikipedia Allee Effect</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-ghost-of-tsushima-sakai-clan-armor">Ghost Of Tsushima Sakai Clan Armor</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-gunasena-book-shop-colombo-contact-number">Gunasena Book Shop Colombo Contact Number</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-kia-seltos-0-to-100-speed">Kia Seltos 0 To 100 Speed</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-toz-106-real-life">Toz-106 Real Life</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-galvanized-steel-garden-edging">Galvanized Steel Garden Edging</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-florida-oysters-shipped">Florida Oysters Shipped</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-16x12-weld-wheels">16x12 Weld Wheels</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-monster-hunter-world%3A-iceborne-discount-code-ps4">Monster Hunter World: Iceborne Discount Code Ps4</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-electronic-ballast-pdf">Electronic Ballast Pdf</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-vizio-d-series-24-1080p">Vizio D-series 24 1080p</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-audi-a5-lease-specials">Audi A5 Lease Specials</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-diamond-certified-songs">Diamond Certified Songs</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-proud-letter-to-my-daughter-from-dad">Proud Letter To My Daughter From Dad</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-best-cold-and-flu-medicine-for-adults">Best Cold And Flu Medicine For Adults</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-discord-pfp-file-size-limit">Discord Pfp File Size Limit</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-expensive-wine-brands-2019">Expensive Wine Brands 2019</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-purpose-of-descriptive-research">Purpose Of Descriptive Research</a>, ";s:7:"expired";i:-1;}