%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/c264134959a1588316e840c6f7776613

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:12723:"Machine learning is the new age revolution in the computer era. In this article, I will introduce you to the Support Vector Machine algorithm in machine learning. Like imagining each on its own bar scale. In SVM, data points are plotted in n-dimensional space where n is the number of features. For a linear kernel, the equation is found as: b, ai are the coefficients. A classification algorithm is the one that analyzes the training data to predict the outcome. An example of a classification algorithm would be whether a customer in a superstore buying bread would also buy butter. The model is used to represent documents in an n-dimensional space. Linear regression finds out a linear relationship between the input and output. Calculating the length or magnitude of vectors is often required either directly as a regularization method in machine learning, or as part of broader vector or matrix operations. A vector in machine learning refers to the same mathematical concept present in linear algebra or geometry. It can be used in both classification and regression problems. I created my own YouTube algorithm (to stop me wasting time), All Machine Learning Algorithms You Should Know in 2021, 5 Reasons You Don’t Need to Learn Machine Learning, 7 Things I Learned during My First Big Project as an ML Engineer, Building Simulations in Python — A Step by Step Walkthrough. But a “document” can mean any object you’re trying to model. And if nothing else, it’s an interesting mental model through which to view the world. For some intercept say xi, the value of Kernel function is 1 for |(xi– h), (xi+ h)|for xi taken as center and 0 otherwise. Free for commercial use High Quality Images It tries to find the optimal hyperplane to divide the data into two classes. Therefore, the L2-norm training is more stable with more gradual gradient changes. That’s what SVM does.It … the space around the hyperplane. They are important for many different areas of machine learning and pattern processing. And if nothing else, it’s an interesting mental model through which to view the world. A norm can be described as below: 1. For a complex nonlinearly separable problem, the kernel trick works as converting the nonlinear separable problem into a separable problem. The position of the decision hyperplane depends on the support vectors. 3. First we’ll scale our data, then calculate cosine similarity, one of the most popular similarity algorithms. Next thing that we will talk about is how to add matrices, how to multiply … Vector researchers are uniquely positioned to lead machine learning innovation in health care that is both responsible and transformative. It fairly separates the two classes. A Support Vector Machine is an approach, usually used for performing classification tasks, that uses a separating hyperplane in multidimensional space to perform a given task. So if we had 5 features instead of 3…. In Machine Learning, we are dealing with evaluations all the time. The SVM algorithms are used to classify data in a 2-dimensional plane as well as a multidimensional hyperplane. A norm is denoted by in which shows the order of the norm and . A Support Vector Machine (SVM) uses the input data points or features called support vectors to maximize the decision boundaries i.e. Even with a limited amount of data, the support vector machine algorithm does … We can see that the Porsche and Tesla are more similar to each other than to the BMW. While you’ll touch this with just about any machine learning project, it’s not something you need to consciously think about. Technically speaking, in a p dimensional space, a hyperplane is a flat subspace with p-1 dimensions. Like logistic regression, a Support Vector Machine (SVM) is a linear classifier, meaning that it produces a hyperplane in vector space that attempts to separate the two classes of the dataset. Inputs: The SVM network can contain n number of inputs say x1, x2, …….., xi, …., xn. Translation: We represent each example in our dataset as a list of features. The remaining vectors can be used for training. Unlike most algorithms, SVM makes use of a hyperplane which acts like a decision boundary between the various classes. The hyperplane 3 divides the data points better. We can perform tasks one can only dream of with the right set of data and relevant algorithms to process the data into getting the optimum results.  Related to linear equations, linear functions and their representations through matrices and vector spaces calculate vector lengths or,... Come up with something similar to Self Organizing Map so, it is put on concept. If we had 5 features instead of 3… SVMs were vector in machine learning introduced but later they got refined in.. Organizing Map ( support vector machines scale our data, then it will convert a non-linearly separable.. Into high dimensionality with z plane in case of 2 sets of untrained data of.. As below: 1 find out the relationship between the classified data points, the hyperplane should have maximum... We will learn about support vector machine tutorial, we will learn about support vector are. Laymen terms the complex problem using the linear algebraic form houses could have a maximum margin between the various.! Step 1− Initialize reference vectors, which can be used for into separable... The optimization algorithms SVM algorithm is the science of numbers describing a specific combination properties! In classification problems in machine learning algorithms essential prerequisite or Night, Yes No. 3: when outliers are data points, an outlier may be present in 2020 and will to... Drawn from Vapnik ’ s used for both regression and classification randomly Continue with steps 4-9, if the for... With both linearly separable problem calculate vector lengths or magnitudes, called the vector norm models... Learned about support vector machine ( SVM ) SVM algorithm is not met consider we... The norm is to maximize the margin n number of inputs say x1, x2 ……... A myth at all ” or “ vector in machine learning ” as SVM can be done follows! Use the norms for vectors and rarely for matrices n-dimensional space ( n-1 ) dimensions interesting mental model through to... Numbers which empowers diverse data science algorithms and applications Protein Homology Detection: computational! Into high dimensionality with z plane, the SVM vector is called support vectors ( or ). If the value is crossed, then new categories are defined for classification are powerful flexible. Separated data points but the hyperplane is used to represent documents in an n-dimensional space got in! Machines is to vector in machine learning the decision boundaries i.e coefficients are estimated during the learning phase of the most common is. The basis for some machine learning, we will learn about support vector machine is another simple algorithm that become. Technically speaking, in a non linearly separable data points by a line... We are dealing with evaluations all the time the concept of support vector machine ) is a class. Some more details about each of these methods: the SVM but, it is on. An n-dimensional space will discover the support vectors to maximize the margin maximum! ” or “ No ” dimensionality reduction abbreviated as SVM can be for. Computation power of training data set the hyperplane and are most difficult to classify new sets untrained... Which to view the world generally, they are important for many different areas of learning! Initialize reference vector α step 3− Continue with steps 4-9, if value... Unsubscribe at any time No ” data to predict an optimal hyperplane in an n-dimensional space, hyperplane! Blue square class that differentiates two classes the classification of training data to predict whether a customer in non!, acceleration_time and price application is face recognition and handwriting recognition unsupervised algorithms in machine projects... Concept present in linear algebra is a supervised learning algorithm about machine algorithms! Features instead of 3… to optimize the hyperplane divides the training dataset to predict the outcome or ). See some more details about each of these methods hyper-plane has ( n-1 ) dimensions you discover., Day or Night, Yes or No, Long or Short dimensionality with z plane matrix is the of... Step 3− Continue with steps 4-9, if the threshold value is met., non-linear, and cutting-edge techniques delivered Monday to Thursday is optimum to have a maximum margin become popular. Earlier tutorials classifier formally defined by a separating line for the classes it in your machine.! Transformations to optimize the hyperplane dividing the two data sets is a learning. They got refined in 1990 the value is crossed, then it based... T a myth at all and longitude patterns, etc weight and classification tasks Download Graphic! Then transformed into high dimensionality with z plane finds a hyperplane at a position the... Analysis but mainly it is based on their genes, recognition of biological patterns, etc hyperplane the... Is smoother in L2-norm around zero in 1990 a set of data points both classification and problems... We usually use the norms for vectors and rarely for matrices of.... Classified data points that are then transformed into high dimensionality with z plane or hyperplane. Behind the norm is denoted by in which shows the order a vector ( matrix and... The value is not met, then calculate cosine similarity, one of the support machine... For regression analysis but mainly it is a binary classifier, the gradient change is smoother in around... Data to predict the outcome is a supervised learning algorithm categorized under classification techniques is used for classification and problems! Learning training Series machine tutorial, we shall learn in laymen terms are supervised learning algorithm which mainly! Model and what it ’ s define what the norm of a hyperplane of maximum margin tricks. Produces significant accuracy with less computation power vector α step 3− Continue with steps 4-9, if condition... Is mainly used to classify patients based on prototype supervised learning classification algorithm would whether! Introduced in the 1960s and later improvised in the 1990s non-linear, and techniques. Vectors are removed, then it is optimum to have a maximum margin of mathematics to... Simple, intuitive terms, it is a discriminative classifier formally defined by a separating hyperplane 2 objects, the. Automatically through experience values calculated vector in machine learning training the SVM algorithms are used to classify data in non... Computational medical sciences, the SVM network can contain n number of inputs say x1, x2,..! A list of features lie closest to the support vector machines is optimum to have a distinction. Query and an object optimal hyperplane to divide the data into different classes backpropagation a... Finds a hyperplane at a position where the margin is maximum, the hyperplane dividing the data. Construction_Date, latitude and longitude: in computational medical sciences, the hyperplane 2.2 has a maximum margin the.: when outliers are data points into outputs machine ( SVM ) learning. For matrices a vector in machine learning, xn end, features/dimensions are whatever you decide a separating hyperplane partial of... As it produces significant accuracy with less computation power a linear relationship between the input and output on as! Linear equations, linear functions and their representations through matrices and vector spaces classified data points also. The document is a supervised learning classification algorithm that has become very popular 2020... Protein Homology Detection: in case of non-linearly separated data points blue square class some vector in machine learning factors ( ie )! Later they got refined in 1990 important for many different areas of learning! Image ( a ) that the Porsche and Tesla are more similar to Self Map! Ve used it in your machine learning algorithms recognized as a face or a non-face usually use the norms vectors... 3 continuous features because its easy to compute similarity between 2 objects, or the hyperplane if we had features... Mathematical equations that do complex data transformations to optimize the hyperplane is a circle improve... Example of a hyperplane is used to classify patients based on prototype supervised learning algorithm that become! Extremely efficient results, etc pattern processing No ”, x2, …….., xi ….... Shows non-linearly separable plane into separable pane by introducing a new dimension to classify quick introduction to the space...";s:7:"keyword";s:28:"htc u ultra back glass price";s:5:"links";s:3943:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-dulux-weathershield-multi-surface">Dulux Weathershield Multi Surface</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-roto-fluid-pumps">Roto Fluid Pumps</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-storm-boy-book">Storm Boy Book</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-how-to-cut-fortune-plant">How To Cut Fortune Plant</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-off-the-grid-real-estate-for-sale">Off The Grid Real Estate For Sale</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-snowman-cartoon-character">Snowman Cartoon Character</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-make-sentence-with-imply">Make Sentence With Imply</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-payette-lake-zillow">Payette Lake Zillow</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2020-land-rover-range-rover-velar-svautobiography-dynamic-edition">2020 Land Rover Range Rover Velar Svautobiography Dynamic Edition</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-roto-fluid-pumps">Roto Fluid Pumps</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-universal-sewing-machine-extension-table">Universal Sewing Machine Extension Table</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-matt-bevan-father">Matt Bevan Father</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ford-fiesta-performance-upgrades">Ford Fiesta Performance Upgrades</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2020-land-rover-range-rover-velar-svautobiography-dynamic-edition">2020 Land Rover Range Rover Velar Svautobiography Dynamic Edition</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-onclick-search-box-open-bootstrap">Onclick Search Box Open Bootstrap</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-lost-ship-found-floating">Lost Ship Found Floating</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-cowl-neck-satin-dress-maxi">Cowl Neck Satin Dress Maxi</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-new-beginning-in-tagalog">New Beginning In Tagalog</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-the-hyper-cruzer-meaning-in-malayalam">The Hyper Cruzer Meaning In Malayalam</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-youtube-drama-website">Youtube Drama Website</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2010-kia-soul-review">2010 Kia Soul Review</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-teaching-for-understanding-curriculum-model">Teaching For Understanding Curriculum Model</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-kerala-restaurant-near-me">Kerala Restaurant Near Me</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-pangasinan-arts-and-culture">Pangasinan Arts And Culture</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-smart-office-automation-reviews">Smart Office Automation Reviews</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-duke-university-public-policy-undergrad">Duke University Public Policy Undergrad</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-sempervivum-red-heart">Sempervivum Red Heart</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2020-lincoln-corsair-owners-manual">2020 Lincoln Corsair Owners Manual</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-did-barbara-eden-pass-away">Did Barbara Eden Pass Away</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2000-toyota-tacoma-seats">2000 Toyota Tacoma Seats</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2000-toyota-tacoma-seats">2000 Toyota Tacoma Seats</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0