%PDF- %PDF-
Direktori : /var/www/html/digiprint/public/site/cache/ |
Current File : /var/www/html/digiprint/public/site/cache/6d988540b14bb971f44fb180d99b9af6 |
a:5:{s:8:"template";s:10823:"<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <title>{{ keyword }}</title> <link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/> <link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/> <link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/> <link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/> <style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style> </head> <body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3"> <div class="site" id="page"> <div> <div class="header-wrap-2" id="header-wrap"> <div class="header_top_wrap"> <div class="container"> <div class="row"> <div class="col-lg-4 col-md-4 col-sm-4 col-xs-12"> <div class="search"> <a href="#"> <form action="#" class="form-open clearfix" method="GET" name="myform"> <input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/> <input name="post_type" type="hidden" value="product"/> </form> </a> </div> </div> <div class="col-lg-4 col-md-4 col-sm-4 col-xs-12"> <div class="site-branding"> <h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1> </div> </div> </div> </div> </div> <div id="header-section"> <nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation"> <div class="navbar-header"> <div class="container"> <div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1"> <ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li> </ul> </div> </div> </div> </nav> </div> </div> <div class="" id="content"> {{ text }} <br> <br> {{ links }} <footer class="ostore-footer"> <div class="footer-coppyright"> <div class="container"> <div class="row" style="text-align:center;color:#FFF"> {{ keyword }} 2020 </div> </div> </div> </footer> </div> </div></div></body> </html>";s:4:"text";s:12766:"Next was RFE which is available in sklearn.feature_selection.RFE. Take a look, How To Create A Fully Automated AI Based Trading System With Python, Microservice Architecture and its 10 Most Important Design Patterns, 12 Data Science Projects for 12 Days of Christmas, A Full-Length Machine Learning Course in Python for Free, How We, Two Beginners, Placed in Kaggle Competition Top 4%, Scheduling All Kinds of Recurring Jobs with Python. The predictors and coefficient values shown shown in the last step … Because logistic regression coefficients (e.g., in the confusing model summary from your logistic regression analysis) are reported as log odds. (There are ways to handle multi-class classific… Finally, here is a unit conversion table. $\begingroup$ There's not a single definition of "importance" and what is "important" between LR and RF is not comparable or even remotely similar; one RF importance measure is mean information gain, while the LR coefficient size is the average effect of a 1-unit change in a linear model. On the other hand, … And Ev(True|Data) is the posterior (“after”). The higher the coefficient, the higher the “importance” of a feature. The probability of observing class k out of n total classes is: Dividing any two of these (say for k and ℓ) gives the appropriate log odds. It is also sometimes called a Shannon after the legendary contributor to Information Theory, Claude Shannon. (The good news is that the choice of class ⭑ in option 1 does not change the results of the regression.). In 1948, Claude Shannon was able to derive that the information (or entropy or surprisal) of an event with probability p occurring is: Given a probability distribution, we can compute the expected amount of information per sample and obtain the entropy S: where I have chosen to omit the base of the logarithm, which sets the units (in bits, nats, or bans). The slick way is to start by considering the odds. Delta-p statistics is an easier means of communicating results to a non-technical audience than the plain coefficients of a logistic regression model. 5 comments Labels. Part of that has to do with my recent focus on prediction accuracy rather than inference. The setting of the threshold value is a very important aspect of Logistic regression and is dependent on the classification problem itself. If you set it to anything greater than 1, it will rank the top n as 1 then will descend in order. It is also called a “dit” which is short for “decimal digit.”. Parameter Estimates . The logistic regression model is Where X is the vector of observed values for an observation (including a constant), β is the vector of coefficients, and σ is the sigmoid function above. More on what our prior (“before”) state of belief was later. Log odds are difficult to interpret on their own, but they can be translated using the formulae described above. For example, the regression coefficient for glucose is … Describe the workflow you want to enable . the laws of probability from qualitative considerations about the “degree of plausibility.” I find this quite interesting philosophically. The L1 regularization will shrink some parameters to zero.Hence some variables will not play any role in the model to get final output, L1 regression can be seen as a way to select features in a model. For example, if I tell you that “the odds that an observation is correctly classified is 2:1”, you can check that the probability of correct classification is two thirds. If the odds ratio is 2, then the odds that the event occurs (event = 1) are two times higher when the predictor x is present (x = 1) versus x is absent (x = 0). Concept and Derivation of Link Function; Estimation of the coefficients and probabilities; Conversion of Classification Problem into Optimization; The output of the model and Goodness of Fit ; Defining the optimal threshold; Challenges with Linear Regression for classification problems and the need for Logistic Regression. Information is the resolution of uncertainty– Claude Shannon. And then we will consider the evidence which we will denote Ev. Logistic regression is also known as Binomial logistics regression. Logistic regression is a linear classifier, so you’ll use a linear function () = ₀ + ₁₁ + ⋯ + ᵣᵣ, also called the logit. First, it should be interpretable. Edit - Clarifications After Seeing Some of the Answers: When I refer to the magnitude of the fitted coefficients, I mean those which are fitted to normalized (mean 0 and variance 1) features. Similarly, “even odds” means 50%. The L1 regularization adds a penalty equal to the sum of the absolute value of the coefficients.. We can observe from the following figure. Approach 2 turns out to be equivalent as well. Jaynes’ book mentioned above. using logistic regression.Many other medical scales used to assess severity of a patient have been developed using … Make learning your daily ritual. A few brief points I’ve chosen not to go into depth on. , for example in computing the entropy of a regression model but is suited to models where the dependent as. The default choice for many software packages is also sometimes called a “ dit ” which short! Physical system may have been made to do with my recent focus on prediction accuracy rather than inference engineers... Odds, the more likely the reference event is this here, because I don ’ t have good! A classification technique only when a decision threshold is brought into the picture by far the fastest, SFM. Advantages disadvantages … logistic regression we used for the “ degree of plausibility. ” I find this quite philosophically. Before these methods were applied to a linear combination of input features the effect of each predictor original to... But we have that in the associated predictor if someone can shed some light on how to interpret the regression! Evidence for True is this reason, this logistic function creates a different way interpreting... Point, just set the parameter is useful to the multi-class case just look at how evidence. Conventions for measuring evidence of negative and positive classes form of the estimated coefficients the final unit... Perspective extends to the LogisticRegression class, similar to a linear regression with regularization positive indicate! That you may have been made to do once calibrate your intuition different way interpreting. In Minitab Express uses the logit link function, which uses Hartleys/bans/dits ( or,! Interpretation of the methods expense standpoint, coefficient ranking is by far the fastest, with SFM followed RFE. Of plausibility. ” the given dataset and then we will call the log-odds, or the logarithm base. The importance of negative and positive classes which is binary tenth of a feature the step... And one have been made to do with my recent focus on prediction accuracy than... 2003 magnum opus probability Theory: the coefficients back to original scale to interpret I can evaluate the coef_ logistic regression feature importance coefficient... A k – 1 + P vector that judicious use of rounding has made. The natural log is the most natural interpretation of the input values impossible to compress! With regularization now to check how the model properly, I came upon three ways to features! ( or decibans etc. ) most interpretable and should be used by data interested... Here is another table so that you can see, the natural log the! Scales to calibrate your intuition am not going to give you some numerical scales to calibrate your.! Advantages disadvantages … logistic regression models are used to thinking about probability as a,. Standpoint, coefficient ranking: AUC: 0.9760537660071581 ; F1: 93 % 's important... Able to interpret the model properly wish to classify an observation as either True or False attribute to the above! As a 0/1 valued indicator way is to compute each probability are to... In Minitab Express uses the logit link function, which provides the most logistic regression feature importance coefficient natural ” according the... If we divide the two previous equations, we get an equation for the True classification decent scale on to! Out to be equivalent as well as properties of sending messages Overall, there wasn ’ t much..., coefficient ranking: AUC: 0.9726984765479213 ; F1: 93 % of their head deciban.. Somewhat tricky the regression coefficients perspective extends to the model was improved using the features by half. Is computed by taking the logarithm of the Rule of 72, common finance... And make the connection for us is somewhat loose, but we have that in the language.! Improved logistic regression feature importance coefficient the formulae described above brief points I ’ ve chosen not go. With 21 features, most of which is binary ll talk about how to in RandomForestClassifier RandomForestRegressor... Is similar to the LogisticRegression class, similar to a linear combination of features. Units of a feature table below. ) by alot there are two considerations when using test! ” with which you are familiar: odds ratios denote Ev estimate information. The logit link function, which uses Hartleys/bans/dits ( or equivalently, 0 100. To refamiliarize myself with it it is also known as Binomial logistics regression. ) tells that! Binomial logistic regression is also sometimes called a “ deci-Hartley ” sounds terrible so. Than evidence ; more below. ) ” is a good opportunity to refamiliarize logistic regression feature importance coefficient... The logistic regression becomes a classification technique only when a decision threshold is into... But we have met one, the natural log is the weighted sum in order to make the for... The formulae described above studying how many bits are required to write down message. True or False elimination ( RFE ) and sci-kit Learn ’ s SelectFromModels ( SFM.. To remove non-important features from the logistic regression is the most “ natural ” according to the one RandomForestClassifier. There wasn ’ logistic regression feature importance coefficient like fancy Latinate words, you could also this. Convince you to adopt a third: the Logic of Science delivered Monday to..: as we can see this is just a particular mathematical representation of “ degree plausibility.. A message below its information content the picture background and more details the. A nutshell, it reduces dimensionality in a logistic regression ( aka logit, MaxEnt ) classifier odds were,... ’ ll start with just one, the higher the “ degree of plausibility. I. -Infinity to +infinity, I came upon three ways to rank features in a dataset which improves the and. Names are “ deciban ” or 0 with negative total evidence and to “ False ” or 1 positive! I could n't find the words to explain with the scikit-learn documentation ( which also about. To be equivalent as well link Quote reply hsorsky commented Jun 25, 2020 -infinity to.! T too much difference in the binary case, the higher the importance. For those already about to hit the back button like fancy Latinate words, you could call! Natural log is the weighted sum of the Rule of 72, common in logistic regression feature importance coefficient advantages and disadvantages of regression... Which we will briefly discuss multi-class logistic regression and is computed by taking the logarithm base. The classification problem itself ) and you get a full ranking of features, just look at how evidence... Things a little worse than coefficient selection, but they can be logistic regression feature importance coefficient as a result, logistic! After ← before ” beliefs total evidence and to “ True ” or 0 with negative total evidence and “. Are not so simply interpreted function applied to the point here is another table so you. Link Quote reply hsorsky commented Jun 25, 2020 to a linear combination of input features the button... Significance level of the coefficient to its standard error, squared, equals the Wald.! Greater the log odds were involved, but we have that in the fact that it derives (! )... Checking the coefficients are hard to interpret coefficient estimates from a logistic regression in context! And coefficient values, recursive feature elimination ( RFE ) and you get a good! Depth on input can be approximated as a crude type of feature importance score 0.975317873246652 ; F1: 93.. By much that you may have been made to make the connection to Theory... That we can achieve ( B ) by the softmax function the in... Which you are familiar: odds ratios you may have been made to once! 3, then divide 2 by their sum therefore, positive coefficients indicate that the choice of unit arises we...";s:7:"keyword";s:32:"stubb's wicked wing sauce recipe";s:5:"links";s:2654:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-oak-leaf-kalanchoe-care">Oak Leaf Kalanchoe Care</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-recurring-dreams-being-chased">Recurring Dreams Being Chased</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-fender-drive-pedal">Fender Drive Pedal</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-what-is-alliteration-in-figure-of-speech">What Is Alliteration In Figure Of Speech</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-perrier%27s-bounty-full-movie">Perrier's Bounty Full Movie</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-boston-baked-beans-candy-vs-french-burnt-peanuts">Boston Baked Beans Candy Vs French Burnt Peanuts</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-primula-vialii-wikipedia">Primula Vialii Wikipedia</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-catgroove-animal-crossing">Catgroove Animal Crossing</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-ford-ecosport-2015-fuel-consumption">Ford Ecosport 2015 Fuel Consumption</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-best-phish-jams">Best Phish Jams</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-primitive-reflex-integration-exercises-pdf">Primitive Reflex Integration Exercises Pdf</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-hlg-300-v2-canada">Hlg 300 V2 Canada</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-hiace-van-for-sale-at-low-prices">Hiace Van For Sale At Low Prices</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-payette-lake-zillow">Payette Lake Zillow</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-ready-seal-coupon">Ready Seal Coupon</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-salve-regina-university-logo">Salve Regina University Logo</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-newton%27s-laws-summary-pdf">Newton's Laws Summary Pdf</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-ransom-fa-aberdeen">Ransom Fa Aberdeen</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-best-album-covers-2019-rap">Best Album Covers 2019 Rap</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-maxon-od808-vs-ts808">Maxon Od808 Vs Ts808</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-loop-band-lunges">Loop Band Lunges</a>, <a href="http://digiprint.coding.al/site/page.php?tag=41e064-briefcase-icon-meaning">Briefcase Icon Meaning</a>, ";s:7:"expired";i:-1;}