%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/1a6a10ced884bd0a57d544a0f84d868c

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:7121:"        ) This is in striking contrast to the case of ordinary differential equations (ODEs) roughly similar to the Laplace equation, with the aim of many introductory textbooks being to find algorithms leading to general solution formulas. It is a special case of an ordinary differential equation.           $$     and integrating over the domain gives, where integration by parts has been used for the second relationship, we get. Convey 'is raised' in mathematical context. From 1870 Sophus Lie's work put the theory of differential equations on a more satisfactory foundation. Just as one classifies conic sections and quadratic forms into parabolic, hyperbolic, and elliptic based on the discriminant B2 − 4AC, the same can be done for a second-order PDE at a given point. The Greek letter Δ denotes the Laplace operator; if u is a function of n variables, then. $\begingroup$ What I don't see in any of the answers: while for ODE the initial value problem and some boundary value problems have unique solutions (up to some constants at least), for PDE, even linear ones, there can be infinitely many completely different solutions, for example time dependent Schrodinger equation for some potentials admits a lot of mathematically valid, but unphysical … Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations. u_t=u_{xx}, The solution for a point source for the heat equation given above is an example of the use of a Fourier integral. ,y(n)) = 0. As such, it is usually acknowledged that there is no "general theory" of partial differential equations, with specialist knowledge being somewhat divided between several essentially distinct subfields.[1]. What is the benefit of having FIPS hardware-level encryption on a drive when you can use Veracrypt instead?     {\displaystyle x=a}     {\displaystyle x=b} Ordinary differential equations form a subclass of partial differential equations, corresponding to functions of a single variable.         The following slides show the forward di erence technique … What I don't see in any of the answers: while for ODE the initial value problem and some boundary value problems have unique solutions (up to some constants at least), for PDE, even linear ones, there can be infinitely many completely different solutions, for example time dependent Schrodinger equation for some potentials admits a lot of mathematically valid, but unphysical solutions. Examples: d y d x = a x and d 3 y d x 3 + y x = b are ODE, but ∂ 2 z ∂ x ∂ y + ∂ z ∂ x + z = 0 and ∂ z ∂ x = ∂ z ∂ y are PDE. Linear PDEs may not have solutions. What is difference between an ordinary equation and differential equation. What is the difference between an implicit ordinary differential equation and a differential algebraic equation?             2 An important example of this is Fourier analysis, which diagonalizes the heat equation using the eigenbasis of sinusoidal waves. Being an undergraduate student I find difficult to understand the perfect differences between normal and partial differential equations. y(t)=e^{-at}y_0,         =      It's more than just the basic reason that there are more variables. Here  This generalizes to the method of characteristics, and is also used in integral transforms. The same principle can be observed in PDEs where the solutions may be real or complex and additive.      Numerical methods for PDE (two quick examples) Discretization: From ODE to PDE For an ODE for u(x) defined on the interval, x ∈ [a, b], and consider a uniform grid with ∆x = (b−a)/N, discretization of x, u, and the derivative(s) of u leads to N equations for ui, i = 0, 1, 2, ..., N, where ui ≡ u(i∆x) and xi ≡ i∆x.         ( A partial derivative differentiates with respect to one independent variable (say $x_3$)while holding the other independent variables constant. "To come back to Earth...it can be five times the force of gravity" - video editor's mistake?         u The Riquier–Janet theory is an effective method for obtaining information about many analytic overdetermined systems. Comparison with the original PDE gives the characteristic ODEs dy dx = x, d dx u(x,y(x)) = u(x,y(x)).     if  If there are several independent variables and several dependent variables, one may have systems of pdes. For well-posedness we require that the energy of the solution is non-increasing, i.e. Why did mainframes have big conspicuous power-off buttons? We see that the linear combination has infinitely many terms, all them linearly independent, so, the vector space has infinitely many dimensions. If the domain is finite or periodic, an infinite sum of solutions such as a Fourier series is appropriate, but an integral of solutions such as a Fourier integral is generally required for infinite domains. This form is analogous to the equation for a conic section: More precisely, replacing ∂x by X, and likewise for other variables (formally this is done by a Fourier transform), converts a constant-coefficient PDE into a polynomial of the same degree, with the terms of the highest degree (a homogeneous polynomial, here a quadratic form) being most significant for the classification. There is, correspondingly, a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. where φ has a non-zero gradient, then S is a characteristic surface for the operator L at a given point if the characteristic form vanishes: The geometric interpretation of this condition is as follows: if data for u are prescribed on the surface S, then it may be possible to determine the normal derivative of u on S from the differential equation. Here's an ODE: [math]m\frac {d^2 x} {d t^2}+kx = 0 [/math] Here [math]x [/math] is an unknown function of [math]t [/math] and [math]m,k [/math] are constants. In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. To say that a PDE is well-posed, one must have: This is, by the necessity of being applicable to several different PDE, somewhat vague. Choosing US House delegation by winner-take-all statewide vote? A boundary condition is homogeneous if u = 0 satisfies it. In special cases, one can find characteristic curves on which the equation reduces to an ODE – changing coordinates in the domain to straighten these curves allows separation of variables, and is called the method of characteristics.             Note that well-posedness allows for growth in terms of data (initial and boundary) and thus it is sufficient to show that  In the finite volume method, surface integrals in a partial differential equation that contain a divergence term are converted to volume integrals, using the divergence theorem. What specific belongs to PDEs but not to ODEs? ";s:7:"keyword";s:18:"neil hilborn   ocd";s:5:"links";s:3826:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-rose-bruford-college-acceptance-rate">Rose Bruford College Acceptance Rate</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-kunekune-pigs-for-sale-kansas">Kunekune Pigs For Sale Kansas</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-bird-control-solutions">Bird Control Solutions</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-haflinger-leather-clogs">Haflinger Leather Clogs</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-a-time-traveller%27s-guide-to-feudal-japan-chapter-226">A Time Traveller's Guide To Feudal Japan Chapter 226</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-spindleclutch-2-monster-set">Spindleclutch 2 Monster Set</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-custom-throwing-axes-for-sale">Custom Throwing Axes For Sale</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-anglo-saxon-runes-font">Anglo-saxon Runes Font</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ksi-houdini-roblox-id">Ksi Houdini Roblox Id</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-fizz-advent-calendar">Fizz Advent Calendar</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-basal-joint-arthritis">Basal Joint Arthritis</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-teaching-college-students-to-be-self-regulated-learners">Teaching College Students To Be Self-regulated Learners</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-diamine-ink-wiki">Diamine Ink Wiki</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-2011-mercedes-e350-price">2011 Mercedes E350 Price</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-social-studies-preschool-curriculum">Social Studies Preschool Curriculum</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-port-hardy-weather-cam">Port Hardy Weather Cam</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-restaurants-that-do-something-special-for-birthdays">Restaurants That Do Something Special For Birthdays</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-pentair-clean-and-clear-150">Pentair Clean And Clear 150</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-sussex-wine-merchants">Sussex Wine Merchants</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-camelot-theme-park-rides">Camelot Theme Park Rides</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-like-us-on-instagram-logo">Like Us On Instagram Logo</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-baby-scrapbook-diy">Baby Scrapbook Diy</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-elizabeth-stewart-stylist-sister">Elizabeth Stewart Stylist Sister</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-sediment-and-erosion-control-plan-template">Sediment And Erosion Control Plan Template</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-philosophy-vanilla-fig-perfume">Philosophy Vanilla Fig Perfume</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-electronic-commercial-door-locks">Electronic Commercial Door Locks</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-accident-on-hwy-31-myrtle-beach-today">Accident On Hwy 31 Myrtle Beach Today</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-lackawanna-state-park-hiking-trails-map">Lackawanna State Park Hiking Trails Map</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-tyranid-40k-lore">Tyranid 40k Lore</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-lamy-crystal-ink-beryl-review">Lamy Crystal Ink Beryl Review</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0