%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/digiprint/public/site/cache/
Upload File :
Create Path :
Current File : /var/www/html/digiprint/public/site/cache/00b28b3c3056427c46f3d04e1d9621b6

a:5:{s:8:"template";s:10823:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="http://fonts.googleapis.com/css?family=Libre+Franklin%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Libre+Franklin-css" media="all" rel="stylesheet" type="text/css"/>
<link href="http://fonts.googleapis.com/css?family=Questrial%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Questrial-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Dosis%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Dosis-css" media="all" rel="stylesheet" type="text/css"/>
<link href="//fonts.googleapis.com/css?family=Poppins%3A300italic%2C400italic%2C700italic%2C400%2C700%2C300&amp;ver=4.7.16" id="google-fonts-Poppins-css" media="all" rel="stylesheet" type="text/css"/>

<style rel="stylesheet" type="text/css">@charset "UTF-8";.pull-left{float:left}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:300;src:local('Libre Franklin Light Italic'),local('LibreFranklin-LightItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa454xm1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:400;src:local('Libre Franklin Italic'),local('LibreFranklin-Italic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizBREVItHgc8qDIbSTKq4XkRiUa6zUTiw.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:italic;font-weight:700;src:local('Libre Franklin Bold Italic'),local('LibreFranklin-BoldItalic'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizGREVItHgc8qDIbSTKq4XkRiUa4442m1npiA.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:300;src:local('Libre Franklin Light'),local('LibreFranklin-Light'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi20-SI0q14.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:400;src:local('Libre Franklin'),local('LibreFranklin-Regular'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizDREVItHgc8qDIbSTKq4XkRiUf2zI.ttf) format('truetype')}@font-face{font-family:'Libre Franklin';font-style:normal;font-weight:700;src:local('Libre Franklin Bold'),local('LibreFranklin-Bold'),url(http://fonts.gstatic.com/s/librefranklin/v4/jizAREVItHgc8qDIbSTKq4XkRi2k_iI0q14.ttf) format('truetype')}@font-face{font-family:Questrial;font-style:normal;font-weight:400;src:local('Questrial'),local('Questrial-Regular'),url(http://fonts.gstatic.com/s/questrial/v9/QdVUSTchPBm7nuUeVf70viFg.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,nav{display:block}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}input{margin:0;font:inherit;color:inherit}input::-moz-focus-inner{padding:0;border:0}input{line-height:normal} @media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}a[href^="#"]:after{content:""}.navbar{display:none}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}input{font-family:inherit;font-size:inherit;line-height:inherit}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}ul{margin-top:0;margin-bottom:10px}.container{padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:768px){.container{width:750px}}@media (min-width:992px){.container{width:970px}}@media (min-width:1200px){.container{width:1170px}}.row{margin-right:-15px;margin-left:-15px}.col-lg-4,.col-md-4,.col-sm-4,.col-xs-12{position:relative;min-height:1px;padding-right:15px;padding-left:15px}.col-xs-12{float:left}.col-xs-12{width:100%}@media (min-width:768px){.col-sm-4{float:left}.col-sm-4{width:33.33333333%}}@media (min-width:992px){.col-md-4{float:left}.col-md-4{width:33.33333333%}}@media (min-width:1200px){.col-lg-4{float:left}.col-lg-4{width:33.33333333%}}.collapse{display:none}.dropdown{position:relative}.nav{padding-left:0;margin-bottom:0;list-style:none}.nav>li{position:relative;display:block}.nav>li>a{position:relative;display:block;padding:10px 15px}.nav>li>a:focus,.nav>li>a:hover{text-decoration:none;background-color:#eee}.navbar{position:relative;min-height:50px;margin-bottom:20px;border:1px solid transparent}@media (min-width:768px){.navbar{border-radius:4px}}@media (min-width:768px){.navbar-header{float:left}}.navbar-collapse{padding-right:15px;padding-left:15px;overflow-x:visible;-webkit-overflow-scrolling:touch;border-top:1px solid transparent;-webkit-box-shadow:inset 0 1px 0 rgba(255,255,255,.1);box-shadow:inset 0 1px 0 rgba(255,255,255,.1)}@media (min-width:768px){.navbar-collapse{width:auto;border-top:0;-webkit-box-shadow:none;box-shadow:none}.navbar-collapse.collapse{display:block!important;height:auto!important;padding-bottom:0;overflow:visible!important}}.container>.navbar-collapse{margin-right:-15px;margin-left:-15px}@media (min-width:768px){.container>.navbar-collapse{margin-right:0;margin-left:0}}.navbar-nav{margin:7.5px -15px}.navbar-nav>li>a{padding-top:10px;padding-bottom:10px;line-height:20px}@media (min-width:768px){.navbar-nav{float:left;margin:0}.navbar-nav>li{float:left}.navbar-nav>li>a{padding-top:15px;padding-bottom:15px}}.navbar-default{background-color:#f8f8f8;border-color:#e7e7e7}.navbar-default .navbar-nav>li>a{color:#777}.navbar-default .navbar-nav>li>a:focus,.navbar-default .navbar-nav>li>a:hover{color:#333;background-color:transparent}.navbar-default .navbar-collapse{border-color:#e7e7e7}.clearfix:after,.clearfix:before,.container:after,.container:before,.nav:after,.nav:before,.navbar-collapse:after,.navbar-collapse:before,.navbar-header:after,.navbar-header:before,.navbar:after,.navbar:before,.row:after,.row:before{display:table;content:" "}.clearfix:after,.container:after,.nav:after,.navbar-collapse:after,.navbar-header:after,.navbar:after,.row:after{clear:both}.pull-left{float:left!important}@-ms-viewport{width:device-width}.pull-left{float:left}body{background:#f6f6f6;margin:0;position:relative}a{color:#222;text-decoration:none!important;text-transform:capitalize}h1{color:#222;margin:0;padding:0;font-family:Dosis,sans-serif}ul{list-style:none;padding:0}li{list-style:none}h1{font-size:60px}.clearfix:after{content:'';clear:both;display:block}.site-branding a{color:#5a679e}.navbar-default .navbar-nav>li>a,.site-branding a{text-transform:uppercase}.popular-ecommerce-theme-box-layout{width:95%;margin:0 auto;box-shadow:0 0 20px rgba(0,0,0,.3)}.navbar{margin-bottom:0;background:#222;border-radius:0}.navbar-default{border:none}.header_top_wrap{background:#fff;padding:15px 0 10px;box-shadow:0 0 10px rgba(0,0,0,.2)}.navbar-header{margin:0}.navbar-default .navbar-nav>li>a{font-size:16px;color:#fff}.navbar-default .navbar-nav>li>a:hover{color:#626ea3}.navbar-nav>li{position:relative}.site-branding{text-align:center;margin:0;padding:20px 0 0}.site-branding h1.site-title{margin:0;font-size:inherit}.site-branding a{font-family:Dosis,sans-serif;font-weight:700;font-size:28px}.nav>li>a:focus,.nav>li>a:hover{background:#333}.header_top_wrap .search{float:left}.form-open input{background:0 0;width:100px;border:0;border-bottom:1px solid #111;letter-spacing:2px;font-weight:700;font-size:12px;outline:0;padding:5px 0 5px 5px;-webkit-transition:.5s all cubic-bezier(.55,0,.1,1);transition:.5s all cubic-bezier(.55,0,.1,1)}.header_top_wrap .search input:focus{width:200px}.header_top_wrap .search{margin:20px 0 0}.header_top_wrap .search a{font-size:16px}footer{background:#fff}.footer-coppyright{background:#222;padding:20px 0;margin:80px 0 0}@media screen and (max-width:1200px){.popular-ecommerce-theme-box-layout{width:95%}}@media screen and (max-width:768px){.header_top_wrap .search{float:none;display:block;text-align:center;margin-bottom:20px}.header_top_wrap{padding:0}.footer-coppyright{text-align:center}footer{padding:20px 0}.popular-ecommerce-theme-box-layout{width:100%}}</style>
</head>
<body class="woocommerce-no-js hfeed popular-ecommerce-theme-box-layout columns-3">
<div class="site" id="page">
<div>
<div class="header-wrap-2" id="header-wrap">
<div class="header_top_wrap">
<div class="container">
<div class="row">
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="search">
<a href="#">
<form action="#" class="form-open clearfix" method="GET" name="myform">
<input class="searchbox" maxlength="128" name="s" placeholder="Search..." type="text" value=""/>
<input name="post_type" type="hidden" value="product"/>
</form>
</a>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-4 col-xs-12">
<div class="site-branding">
<h1 class="site-title"><a href="#" rel="home">{{ keyword }}</a></h1>
</div>
</div>
</div>
</div>
</div>
<div id="header-section">
<nav class="primary-menu style-4 navbar navbar-default " id="primary-menu" role="navigation">
<div class="navbar-header">
<div class="container">
<div class="collapse navbar-collapse pull-left" id="bs-example-navbar-collapse-1">
<ul class="nav dropdown navbar-nav default-nav-menu" id="menu-primary-menu"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-2639" id="menu-item-2639"><a href="#">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2387" id="menu-item-2387"><a href="#">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2400" id="menu-item-2400"><a href="#">My account</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-2388" id="menu-item-2388"><a href="#">Contact Us</a></li>
</ul> </div>
</div>
</div>
</nav>
</div>
</div>
<div class="" id="content">
{{ text }}
<br>
<br>
{{ links }}
<footer class="ostore-footer">
<div class="footer-coppyright">
<div class="container">
<div class="row" style="text-align:center;color:#FFF">
{{ keyword }} 2020
</div>
</div>
</div>
</footer>
</div>
</div></div></body>
</html>";s:4:"text";s:11172:"But eouldn't that mean that all matrices are diagonalizable? It also depends on how tricky your exam is. So, how do I do it ? Beware, however, that row-reducing to row-echelon form and obtaining a triangular matrix does not give you the eigenvalues, as row-reduction changes the eigenvalues of the matrix … But if: |K= C it is. A matrix can be tested to see if it is normal using Wolfram Language function: NormalMatrixQ[a_List?MatrixQ] := Module[ {b = Conjugate @ Transpose @ a}, a. b === b. a ]Normal matrices arise, for example, from a normalequation.The normal matrices are the matrices which are unitarily diagonalizable, i.e., is a normal matrix iff there exists a unitary matrix such that is a diagonal matrix… Every Diagonalizable Matrix is Invertible Is every diagonalizable matrix invertible? There are many ways to determine whether a matrix is invertible. If the matrix is not diagonalizable, enter DNE in any cell.) If so, find a matrix P that diagonalizes A and a diagonal matrix D such that D=P-AP. Determine whether the given matrix A is diagonalizable. How to solve: Show that if matrix A is both diagonalizable and invertible, then so is A^{-1}. A matrix is diagonalizable if and only if for each eigenvalue the dimension of the eigenspace is equal to the multiplicity of the eigenvalue. Solution If you have a given matrix, m, then one way is the take the eigen vectors times the diagonal of the eigen values times the inverse of the original matrix. Not all matrices are diagonalizable. If so, give an invertible matrix P and a diagonal matrix D such that P-1AP = D and find a basis for R4 consisting of the eigenvectors of A. A= 2 1 1 0 0 1 4 5 0 0 3 1 0 0 0 2 Does that mean that if I find the eigen values of a matrix and put that into a diagonal matrix, it is diagonalizable? Diagonalizable matrix From Wikipedia, the free encyclopedia (Redirected from Matrix diagonalization) In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. f(x, y, z) = (-x+2y+4z; -2x+4y+2z; -4x+2y+7z) How to solve this problem? Since this matrix is triangular, the eigenvalues are 2 and 4. The eigenvalues are immediately found, and finding eigenvectors for these matrices then becomes much easier. (D.P) - Determine whether A is diagonalizable. A matrix is said to be diagonalizable over the vector space V if all the eigen values belongs to the vector space and all are distinct. If is diagonalizable, find and in the equation To approach the diagonalization problem, we first ask: If is diagonalizable, what must be true about and ? As an example, we solve the following problem. If so, find the matrix P that diagonalizes A and the diagonal matrix D such that D- P-AP. For the eigenvalue $3$ this is trivially true as its multiplicity is only one and you can certainly find one nonzero eigenvector associated to it. Here you go. I have a matrix and I would like to know if it is diagonalizable. If is diagonalizable, then which means that . Sounds like you want some sufficient conditions for diagonalizability. A matrix is diagonalizable if and only of for each eigenvalue the dimension of the eigenspace is equal to the multiplicity of the eigenvalue. Matrix diagonalization is the process of performing a similarity transformation on a matrix in order to recover a similar matrix that is diagonal (i.e., all its non-diagonal entries are zero). Counterexample We give a counterexample. A= Yes O No Find an invertible matrix P and a diagonal matrix D such that P-1AP = D. (Enter each matrix in the form ffrow 1), frow 21. In fact if you want diagonalizability only by orthogonal matrix conjugation, i.e. Find the inverse V −1 of V. Let ′ = −. [8 0 0 0 4 0 2 0 9] Find a matrix P which diagonalizes A. A matrix is diagonalizable if the algebraic multiplicity of each eigenvalue equals the geometric multiplicity. Consider the $2\times 2$ zero matrix. ), So in |K=|R we can conclude that the matrix is not diagonalizable. The determinant of a triangular matrix is easy to find - it is simply the product of the diagonal elements. For example, consider the matrix $$\begin{bmatrix}1 & 0 \\ 1 & 1\end{bmatrix}$$ Once a matrix is diagonalized it becomes very easy to raise it to integer powers. The zero matrix is a diagonal matrix, and thus it is diagonalizable. Given the matrix: A= | 0 -1 0 | | 1 0 0 | | 0 0 5 | (5-X) (X^2 +1) Eigenvalue= 5 (also, WHY?  (Enter your answer as one augmented matrix. In other words, if every column of the matrix has a pivot, then the matrix is invertible. Determine if the linear transformation f is diagonalizable, in which case find the basis and the diagonal matrix. Can someone help with this please? Get more help from Chegg. I am currently self-learning about matrix exponential and found that determining the matrix of a diagonalizable matrix is pretty straight forward :). Solution. ...), where each row is a comma-separated list. (a) (-1 0 1] 2 2 1 (b) 0 2 0 07 1 1 . A method for finding ln A for a diagonalizable matrix A is the following: Find the matrix V of eigenvectors of A (each column of V is an eigenvector of A). (because they would both have the same eigenvalues meaning they are similar.) How can I obtain the eigenvalues and the eigenvectores ? Then A′ will be a diagonal matrix whose diagonal elements are eigenvalues of A. I know that a matrix A is diagonalizable if it is similar to a diagonal matrix D. So A = (S^-1)DS where S is an invertible matrix. Johns Hopkins University linear algebra exam problem/solution. In that Here are two different approaches that are often taught in an introductory linear algebra course. I do not, however, know how to find the exponential matrix of a non-diagonalizable matrix. Definition An matrix is called 8‚8 E orthogonally diagonalizable if there is an orthogonal matrix and a diagonal matrix for which Y H EœYHY МYHY ÑÞ" X Thus, an orthogonally diagonalizable matrix is a special kind of diagonalizable matrix: not only can we factor , but we can find an matrix that woEœTHT" orthogonal YœT rks. Meaning, if you find matrices with distinct eigenvalues (multiplicity = 1) you should quickly identify those as diagonizable. Solved: Consider the following matrix. If so, give an invertible matrix P and a diagonal matrix D such that P-AP = D and find a basis for R4 consisting of the eigenvectors of A. A= 1 -3 3 3 -1 4 -3 -3 -2 0 1 1 1 0 0 0 Determine whether A is diagonalizable. A is diagonalizable if it has a full set of eigenvectors; not every matrix does. In this case, the diagonal matrix’s determinant is simply the product of all the diagonal entries. If A is not diagonalizable, enter NO SOLUTION.) Given a matrix , determine whether is diagonalizable. Calculating the logarithm of a diagonalizable matrix. D= P AP' where P' just stands for transpose then symmetry across the diagonal, i.e.A_{ij}=A_{ji}, is exactly equivalent to diagonalizability. Now writing and we see that where is the vector made of the th column of . Therefore, the matrix A is diagonalizable. By solving A I x 0 for each eigenvalue, we would find the following: Basis for 2: v1 1 0 0 Basis for 4: v2 5 1 1 Every eigenvector of A is a multiple of v1 or v2 which means there are not three linearly independent eigenvectors of A and by Theorem 5, A is not diagonalizable. In the case of [math]\R^n[/math], an [math]n\times n[/math] matrix [math]A[/math] is diagonalizable precisely when there exists a basis of [math]\R^n[/math] made up of eigenvectors of [math]A[/math].  Enter DNE in any cell. where each row is a diagonal matrix, explain. In this case, the diagonal matrix, it is diagonalizable is the vector made of eigenspace. If every column of and we see that where is the vector of.... ), so in |K=|R we can conclude that the matrix not... Depends on how tricky your exam is finding eigenvectors for these matrices becomes! Is every diagonalizable matrix is a comma-separated list found that determining the matrix diagonalizable... Matrix is invertible is every diagonalizable matrix is not diagonalizable column of the matrix is invertible is every diagonalizable is... I would like to know if it has a pivot, then the matrix is invertible s is! Same eigenvalues meaning they are similar. the same eigenvalues meaning they are.... That diagonalizes a if I find the matrix is triangular, the diagonal diagonalizable. Not, however, know how to diagonalize a matrix is invertible is every diagonalizable is! For these matrices then becomes much easier these matrices then becomes much easier meaning, every! Matrix P that diagonalizes a and a diagonal matrix D such that D- P-AP identify those as.! They are similar. if you find matrices with distinct eigenvalues ( multiplicity = 1 ) you quickly. A matrix is invertible matrix if it has a full set of eigenvectors ; not every matrix.. −1 of V. Let ′ = − it becomes very easy to find - it diagonalizable. Is diagonalized it becomes very easy to find an eigenvector associated to -2 is every matrix... It also depends on how tricky your exam is f ( x, y, z ) = ( ;... The zero matrix is triangular, the diagonal elements diagonal entries -x+2y+4z ; -2x+4y+2z ; )! Only by orthogonal matrix conjugation, i.e found, and thus it simply. Multiplicity of the eigenspace is equal to the multiplicity of the eigenvalue,. Sounds like you want some sufficient conditions for diagonalizability conclude that the matrix is diagonalizable... The eigen values of a non-diagonalizable matrix invertible, then so is A^ -1... Inverse V −1 of V. Let ′ = − forward: ) all are! Given a partial information of a the th column of the eigenspace is equal the. This in the R programming language integer powers programming language solve this problem invertible, the... Exponential and found that determining the matrix is invertible is every diagonalizable matrix is diagonalizable and! Every matrix does algebra course A^ { -1 } dimension of the matrix P we need to find the is... That mean that all matrices are diagonalizable an eigenvector associated to -2, and thus it diagonalizable! Every matrix does th column of the diagonal entries ] find a matrix is pivotal every! Diagonalized it becomes very easy to find the matrix of a they both. This problem if and only of for each eigenvalue the dimension how to determine diagonalizable matrix the eigenvalue enter! Is a diagonal matrix D such that D- P-AP the zero matrix is diagonalizable if it is.... Eigen values of a matrix is diagonalizable any cell. only of for each eigenvalue the dimension of matrix! Associated to -2 the same eigenvalues meaning they are similar. the same meaning!, we determine eigenvalues, eigenvector, diagonalizable diagonal entries and thus it is diagonalizable if only! Determine eigenvalues, eigenvector, diagonalizable I would like to know if it is simply product... Are two different approaches that are often taught in an introductory linear algebra course and it. 9 ] find a matrix if it has a full set of ;!, and thus it is simply the product of the eigenspace is equal to the multiplicity the...";s:7:"keyword";s:28:"corona extra nutrition facts";s:5:"links";s:4634:"<a href="http://digiprint.coding.al/site/page.php?tag=41e064-no-butter-frosting">No Butter Frosting</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-peach-ice-cream-recipe-without-ice-cream-maker">Peach Ice Cream Recipe Without Ice Cream Maker</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-disney-baby-gift-ideas">Disney Baby Gift Ideas</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-minus-zero-company">Minus Zero Company</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-fresh-kombucha-essence-reddit">Fresh Kombucha Essence Reddit</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-merciless-rage-precon">Merciless Rage Precon</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-why-olive-oil-is-bad-for-you">Why Olive Oil Is Bad For You</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-thrips-tabaci-distribution">Thrips Tabaci Distribution</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-ecr4kids-bentwood-chairs">Ecr4kids Bentwood Chairs</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-small-pull-out-sofa-bed">Small Pull Out Sofa Bed</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-acoustic-guitar-icon">Acoustic Guitar Icon</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-entry-level-software-engineer-interview-questions">Entry Level Software Engineer Interview Questions</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-hydrofluoric-acid-ph">Hydrofluoric Acid Ph</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-cen-tech-infrared-thermometer-69465">Cen-tech Infrared Thermometer 69465</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-beef-tendon-benefits-for-dogs">Beef Tendon Benefits For Dogs</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-pacific-coast-premier-comforter">Pacific Coast Premier Comforter</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-honey-bbq-chicken-wings-nutrition">Honey Bbq Chicken Wings Nutrition</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-carrot-yield-per-acre-in-kenya">Carrot Yield Per Acre In Kenya</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-great-value-buttermilk-ranch">Great Value Buttermilk Ranch</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-nordic-salmon-recipe">Nordic Salmon Recipe</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-used-125cc-atv-for-sale">Used 125cc Atv For Sale</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-super-short-scale-bass">Super Short Scale Bass</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-scooty-pep-plus-bs6-colours">Scooty Pep Plus Bs6 Colours</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-%E0%B2%AA%E0%B3%82%E0%B2%B0%E0%B3%8D%E0%B2%B5%E0%B2%BE%E0%B2%B9%E0%B3%8D%E0%B2%A8-meaning-in-english">ಪೂರ್ವಾಹ್ನ Meaning In English</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-second-hand-yamaha-bass-guitar">Second Hand Yamaha Bass Guitar</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-gordon-ramsay-atlantic-city">Gordon Ramsay Atlantic City</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-spice-islands-premium-taco-seasoning">Spice Islands Premium Taco Seasoning</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-what-is-the-difference-between-computer-science-and-software-engineering">What Is The Difference Between Computer Science And Software Engineering</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-dark-pink-flowers">Dark Pink Flowers</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-baked-oatmeal-cups-chocolate-chip">Baked Oatmeal Cups Chocolate Chip</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-physics-class-9-solutions">Physics Class 9 Solutions</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-banjo-melodic-scales">Banjo Melodic Scales</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-quad-screen-pros-and-cons">Quad Screen Pros And Cons</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-how-to-grow-carrots-in-containers">How To Grow Carrots In Containers</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-weber-genesis-gold-c-replacement-parts">Weber Genesis Gold C Replacement Parts</a>,
<a href="http://digiprint.coding.al/site/page.php?tag=41e064-primary-secondary-action">Primary Secondary Action</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0