%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/diaspora/api_internal/public/topics/cache/
Upload File :
Create Path :
Current File : /var/www/html/diaspora/api_internal/public/topics/cache/8a38824169f3f3a1dde820fd8dbaeb76

a:5:{s:8:"template";s:9093:"<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<title>{{ keyword }}</title>
<link href="//fonts.googleapis.com/css?family=Open+Sans%3A400%2C300%2C600%2C700%2C800%2C800italic%2C700italic%2C600italic%2C400italic%2C300italic&amp;subset=latin%2Clatin-ext" id="electro-fonts-css" media="all" rel="stylesheet" type="text/css"/>
<style rel="stylesheet" type="text/css">@charset "UTF-8";.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.wc-block-product-categories__button:not(:disabled):not([aria-disabled=true]):hover{background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #e2e4e7,inset 0 0 0 2px #fff,0 1px 1px rgba(25,30,35,.2)}.wc-block-product-categories__button:not(:disabled):not([aria-disabled=true]):active{outline:0;background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #ccd0d4,inset 0 0 0 2px #fff}.wc-block-product-search .wc-block-product-search__button:not(:disabled):not([aria-disabled=true]):hover{background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #e2e4e7,inset 0 0 0 2px #fff,0 1px 1px rgba(25,30,35,.2)}.wc-block-product-search .wc-block-product-search__button:not(:disabled):not([aria-disabled=true]):active{outline:0;background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #ccd0d4,inset 0 0 0 2px #fff} @font-face{font-family:'Open Sans';font-style:italic;font-weight:300;src:local('Open Sans Light Italic'),local('OpenSans-LightItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWyV9hlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:400;src:local('Open Sans Italic'),local('OpenSans-Italic'),url(http://fonts.gstatic.com/s/opensans/v17/mem6YaGs126MiZpBA-UFUK0Xdcg.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:600;src:local('Open Sans SemiBold Italic'),local('OpenSans-SemiBoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKXGUdhlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:700;src:local('Open Sans Bold Italic'),local('OpenSans-BoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWiUNhlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:800;src:local('Open Sans ExtraBold Italic'),local('OpenSans-ExtraBoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKW-U9hlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(http://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFW50e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:600;src:local('Open Sans SemiBold'),local('OpenSans-SemiBold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UNirkOXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:800;src:local('Open Sans ExtraBold'),local('OpenSans-ExtraBold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN8rsOXOhs.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,header{display:block}a{background-color:transparent}a:active{outline:0}a:hover{outline:0}@media print{*,::after,::before{text-shadow:none!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}}html{-webkit-box-sizing:border-box;box-sizing:border-box}*,::after,::before{-webkit-box-sizing:inherit;box-sizing:inherit}@-ms-viewport{width:device-width}@viewport{width:device-width}html{font-size:16px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;color:#373a3c;background-color:#fff}[tabindex="-1"]:focus{outline:0!important}ul{margin-top:0;margin-bottom:1rem}a{color:#0275d8;text-decoration:none}a:focus,a:hover{color:#014c8c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a{-ms-touch-action:manipulation;touch-action:manipulation}.container{padding-right:.9375rem;padding-left:.9375rem;margin-right:auto;margin-left:auto}.container::after{display:table;clear:both;content:""}@media (min-width:544px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:720px}}@media (min-width:992px){.container{max-width:940px}}@media (min-width:1200px){.container{max-width:1140px}}.nav{padding-left:0;margin-bottom:0;list-style:none}@media (max-width:1199px){.hidden-lg-down{display:none!important}} @media (max-width:568px){.site-header{border-bottom:1px solid #ddd;padding-bottom:0}}.footer-bottom-widgets{background-color:#f8f8f8;padding:4.143em 0 5.714em 0}.copyright-bar{background-color:#eaeaea;padding:.78em 0}.copyright-bar .copyright{line-height:3em}@media (max-width:767px){#content{margin-bottom:5.714em}}@media (max-width:991px){.site-footer{padding-bottom:60px}}.electro-compact .footer-bottom-widgets{padding:4.28em 0 4.44em 0}.electro-compact .copyright-bar{padding:.1em 0}.off-canvas-wrapper{width:100%;overflow-x:hidden;position:relative;backface-visibility:hidden;-webkit-overflow-scrolling:auto}.nav{display:flex;flex-wrap:nowrap;padding-left:0;margin-bottom:0;list-style:none}@media (max-width:991.98px){.footer-v2{padding-bottom:0}}body:not(.electro-v1) .site-content-inner{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.site-content{margin-bottom:2.857em}.masthead{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px;align-items:center}.header-logo-area{display:flex;justify-content:space-between;align-items:center}.masthead .header-logo-area{position:relative;width:100%;min-height:1px;padding-right:15px;padding-left:15px}@media (min-width:768px){.masthead .header-logo-area{flex:0 0 25%;max-width:25%}}.masthead .header-logo-area{min-width:300px;max-width:300px}.desktop-footer .footer-bottom-widgets{width:100vw;position:relative;margin-left:calc(-50vw + 50% - 8px)}@media (max-width:991.98px){.desktop-footer .footer-bottom-widgets{margin-left:calc(-50vw + 50%)}}.desktop-footer .footer-bottom-widgets .footer-bottom-widgets-inner{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.desktop-footer .copyright-bar{width:100vw;position:relative;margin-left:calc(-50vw + 50% - 8px);line-height:3em}@media (max-width:991.98px){.desktop-footer .copyright-bar{margin-left:calc(-50vw + 50%)}}.desktop-footer .copyright-bar::after{display:block;clear:both;content:""}.desktop-footer .copyright-bar .copyright{float:left}.desktop-footer .copyright-bar .payment{float:right}@media (max-width:991.98px){.footer-v2{padding-bottom:0}}@media (max-width:991.98px){.footer-v2 .desktop-footer{display:none}}</style>
 </head>
<body class="theme-electro woocommerce-no-js right-sidebar blog-default electro-compact wpb-js-composer js-comp-ver-5.4.7 vc_responsive">
<div class="off-canvas-wrapper">
<div class="hfeed site" id="page">
<header class="header-v2 stick-this site-header" id="masthead">
<div class="container hidden-lg-down">
<div class="masthead"><div class="header-logo-area"> <div class="header-site-branding">
<h1>
{{ keyword }}
</h1>
</div>
</div><div class="primary-nav-menu electro-animate-dropdown"><ul class="nav nav-inline yamm" id="menu-secondary-nav"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-4315" id="menu-item-4315"><a href="#" title="Home">Home</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-4911" id="menu-item-4911"><a href="#" title="About">About</a></li>
<li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-4912" id="menu-item-4912"><a href="#" title="Contact">Contact</a></li>
</ul></div> </div><div class="electro-navbar">
<div class="container">
</div>
</div>
</div>
</header>
<div class="site-content" id="content" tabindex="-1">
<div class="container">
<div class="site-content-inner">
{{ text }}
</div> </div>
</div>
<footer class="site-footer footer-v2" id="colophon">
<div class="desktop-footer container">
<div class="footer-bottom-widgets">
<div class="container">
<div class="footer-bottom-widgets-inner">
{{ links }}
</div>
</div>
</div>
<div class="copyright-bar">
<div class="container">
<div class="copyright">{{ keyword }} 2020</div>
<div class="payment"></div>
</div>
</div></div>
</footer>
</div>
</div>
</body>
</html>";s:4:"text";s:7230:"It is useful to understand that we can usually describe a group without listing out all of its elements. The resulting group structure is the subject of much contemporary research. New user? If b1b2=b1b_1b_2 = b_1b1​b2​=b1​ or b1b2=b2b_1b_2 = b_2b1​b2​=b2​, then we conclude one of b1b_1b1​ and b2b_2b2​ is the identity, again a contradiction. As the building blocks of abstract algebra, groups are so general and fundamental that they arise in nearly every branch of mathematics and the sciences. In the block formed by the first m columns, write the m×m identity matrix. Consider just rotations about the axes: If I first rotate 90 degrees counterclockwise about the y-axis and then 90 degrees counterclockwise about the z-axis then his will have a different result than if I were to rotate 90 degrees about the z-axis and then 90 degrees about the y-axis. This book is composed of two parts: Part I (Chaps. Take. This section contains some basic properties and definitions of terms that are used to describe groups and their elements. It’s obvious that I haven’t rotated the paper by 30 degrees, because then the paper would look different. 1a+b2=a−b2a2−2b2=aa2−2b2+−ba2−2b22, You can check, for instance, that 1∗(2∗2)=441 1*(2*2) = 441 1∗(2∗2)=441 and (1∗2)∗2=209 (1*2)*2 = 209 (1∗2)∗2=209. (c) The set of invertible 2×2 2 \times 2 2×2 matrices with real entries, with operation given by matrix multiplication. In symbolic form, we get (x−1)−1=x. Trying to take off your socks while your shoes are on is going to be very difficult. (d) This is not a group. We can produce some very good codes without it by taking advantage of the fact that the result I just mentioned implies that if every column of H is nonzero and no two columns are equal then the minimum weight, and thus the minimum distance of the code, is at least three. Define the weight w(x) to mean the number of ones in x. Multiplication of real numbers is associative and has identity 1=1+02 1 = 1+0\sqrt{2} 1=1+02​, so the only thing to check is that everything in T T T has a multiplicative inverse in T T T. To see this, write What is the value of x2016?x^{2016}?x2016? If x,y∈Gx, y \in G x,y∈G have inverses x−1 x^{-1}x−1 and y−1y^{-1} y−1 respectively, what is the inverse of xy? A group ⟨G,*⟩ is a set G with a rule * for combining any two elements in G that satisfies the group axioms: In the abstract we often suppress * and write a*b as ab and refer to * as multiplication. I write down the following parity-check matrix: There are two pairs of columns that are equal, so the smallest t for which any collection of t columns is linearly independent is one, so the minimum weight, and therefore the minimum distance I will have, is two. When it’s possible to write every element of a group G as products of a (not necessarily proper) subset A of G then we say that A generates G and write this as G=⟨A⟩. The associativity condition implies that it makes sense to drop the parentheses altogether and speak of the product of nnn elements of GGG, a1∗a2∗⋯∗ana_1 * a_2 * \cdots * a_na1​∗a2​∗⋯∗an​, since it does not matter how the parentheses are arranged. The rows represent the parity-check equations A₄=A₁+A₃ and A₅=A₁+A₂+A₃. The group G G G is abelian if for any x,y∈Gx, y \in Gx,y∈G, xy=yxxy = yx xy=yx. For example, the group G={e, a, b, b², ab, ab²} with the constraints a²=e, b³=e, ba=ab² is is generated by a and b so G=⟨{a,b}⟩. Also, let x=a1∘a2∘⋯∘an−1∘anx=a_1\circ a_2\circ\cdots\circ a_{n-1}\circ a_nx=a1​∘a2​∘⋯∘an−1​∘an​. Note that Z2×Z2≅Z8×\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathbb{Z}_8^\timesZ2​×Z2​≅Z8×​ but Z2×Z2≇Z4\mathbb{Z}_2 \times \mathbb{Z}_2 \not \cong \mathbb{Z}_4Z2​×Z2​​≅Z4​. By the same reasoning, all Zn\mathbb{Z}_nZn​ are cyclic. Similarly, let yyy and y′y'y′ be inverses of xxx. Cite this: J. Chem. A group of n elements where every element is obtained by raising one element to an integer power, {e, a, a², …, aⁿ⁻¹}, where e=a⁰=aⁿ, is called a cyclic group of order n generated by a. If GGG contains an element of order 4, then GGG is cyclic and therefore isomorphic to Z4\mathbb{Z}_4Z4​. Therefore, by definition, ϕ\phiϕ is an isomorphism, so G≅H×KG \cong H \times KG≅H×K. Left-multiplying by ϕ(x)−1\phi(x)^{-1}ϕ(x)−1 gives us the desired equality ϕ(x−1)=ϕ(x)−1\phi(x^{-1}) = \phi(x)^{-1}ϕ(x−1)=ϕ(x)−1. □_\square□​. Group Theory forms an essential part of all mathematics degree courses and this book provides a straightforward and accessible introduction to the subject assuming that the student has no previous knowledge of group theory. QED. This is because we generally start with a set of elements, and then apply the group operation to all pairs of elements until we cannot create any more distinct elements.  Group theory is the study of groups. 44, 3, XXX-XXX. Plus, there is so much to say about the Rubik’s cube group that it deserves a standalone piece, so that will be coming soon. Lecture notes (PDF file for download). An error is said to occur when interference changes a bit in a transmitted word. QED. Together, these are all called the symmetry transformations of the square. □_\square□​. Let GGG be a group. (a) This is not a group because most integers don't have multiplicative inverses. Define a mapping ϕ:H×K→G\phi : H \times K \rightarrow Gϕ:H×K→G given by ϕ:(h,k)↦hk\phi : (h,k) \mapsto hkϕ:(h,k)↦hk. 1) Z \mathbb{Z} Z: There are infinitely many elements. (d) The set Z \mathbb ZZ of integers, with operation given by x∗y=(x+y)(1+xy) x*y = (x+y)(1+xy) x∗y=(x+y)(1+xy). \end{cases} xm=⎩⎪⎨⎪⎧​x∗x∗⋯∗x  (m terms)ey∗y∗⋯∗y  (m terms)​if m>0if m=0if m<0.​. In this case we say that the code is a group code. In the abstract we often suppress * and write a*b as ab and refer to * as multiplication. □ y=y*e=y*(x*y')=(y*x)*y' =e*y' =y'.\ _\squarey=y∗e=y∗(x∗y′)=(y∗x)∗y′=e∗y′=y′. More formally, the group operation is a function G×G→GG\times G \rightarrow G G×G→G, which is denoted by (x,y)↦x∗y (x,y) \mapsto x * y (x,y)↦x∗y, satisfying the following properties (also known as the group axioms). Re- (a) The set S S S of nonzero integers, with operation given by multiplication. If the smallest such XXX is finite, then we say GGG is finitely generated. Inverses: If a∈C then ga=ag for all g∈G, so a⁻¹(ga)a⁻¹=a⁻¹(ag)a⁻¹. Classify all groups of order 4 up to isomorphism. Lecture Notes. In the method of maximum-likelihood decoding, if we receive a word x, which may contain errors, the receiver should interpret x as the codeword a such that d(a,x) is a minimum. Why Writing in Mathematics Vital for Teaching. x^m = \begin{cases} The direct product G×HG \times HG×H of groups GGG and HHH (with operations ∗G\ast_G∗G​ and ∗H\ast_H∗H​, respectively) is a group containing the elements {(g,h)∣g∈G∧h∈H},\{(g,h) | g \in G \wedge h \in H\},{(g,h)∣g∈G∧h∈H}, where the group operation ∗GH\ast_{GH}∗GH​ is defined as. ";s:7:"keyword";s:28:"introduction to group theory";s:5:"links";s:1095:"<a href="http://testapi.diaspora.coding.al/topics/mainland-carryout-landover-menu-efd603">Mainland Carryout Landover Menu</a>,
<a href="http://testapi.diaspora.coding.al/topics/apartamentos-de-renta-en-los-angeles-efd603">Apartamentos De Renta En Los Angeles</a>,
<a href="http://testapi.diaspora.coding.al/topics/genetically-modified-organisms-social-and-ethical-issues-efd603">Genetically Modified Organisms Social And Ethical Issues</a>,
<a href="http://testapi.diaspora.coding.al/topics/shaw-valore-vinyl-plank-flooring-efd603">Shaw Valore Vinyl Plank Flooring</a>,
<a href="http://testapi.diaspora.coding.al/topics/everest-masala-10-rs-efd603">Everest Masala 10 Rs</a>,
<a href="http://testapi.diaspora.coding.al/topics/burning-rangers-cheats-efd603">Burning Rangers Cheats</a>,
<a href="http://testapi.diaspora.coding.al/topics/microsoft-pay-scales-efd603">Microsoft Pay Scales</a>,
<a href="http://testapi.diaspora.coding.al/topics/negative-harmony-wheel-efd603">Negative Harmony Wheel</a>,
<a href="http://testapi.diaspora.coding.al/topics/birch-wood-color-efd603">Birch Wood Color</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0