%PDF- %PDF-
Direktori : /var/www/html/diaspora/api_internal/public/topics/cache/ |
Current File : /var/www/html/diaspora/api_internal/public/topics/cache/7dabea02770d4b2ccb959e6242c59e1a |
a:5:{s:8:"template";s:9093:"<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <title>{{ keyword }}</title> <link href="//fonts.googleapis.com/css?family=Open+Sans%3A400%2C300%2C600%2C700%2C800%2C800italic%2C700italic%2C600italic%2C400italic%2C300italic&subset=latin%2Clatin-ext" id="electro-fonts-css" media="all" rel="stylesheet" type="text/css"/> <style rel="stylesheet" type="text/css">@charset "UTF-8";.has-drop-cap:not(:focus):first-letter{float:left;font-size:8.4em;line-height:.68;font-weight:100;margin:.05em .1em 0 0;text-transform:uppercase;font-style:normal}.wc-block-product-categories__button:not(:disabled):not([aria-disabled=true]):hover{background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #e2e4e7,inset 0 0 0 2px #fff,0 1px 1px rgba(25,30,35,.2)}.wc-block-product-categories__button:not(:disabled):not([aria-disabled=true]):active{outline:0;background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #ccd0d4,inset 0 0 0 2px #fff}.wc-block-product-search .wc-block-product-search__button:not(:disabled):not([aria-disabled=true]):hover{background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #e2e4e7,inset 0 0 0 2px #fff,0 1px 1px rgba(25,30,35,.2)}.wc-block-product-search .wc-block-product-search__button:not(:disabled):not([aria-disabled=true]):active{outline:0;background-color:#fff;color:#191e23;box-shadow:inset 0 0 0 1px #ccd0d4,inset 0 0 0 2px #fff} @font-face{font-family:'Open Sans';font-style:italic;font-weight:300;src:local('Open Sans Light Italic'),local('OpenSans-LightItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWyV9hlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:400;src:local('Open Sans Italic'),local('OpenSans-Italic'),url(http://fonts.gstatic.com/s/opensans/v17/mem6YaGs126MiZpBA-UFUK0Xdcg.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:600;src:local('Open Sans SemiBold Italic'),local('OpenSans-SemiBoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKXGUdhlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:700;src:local('Open Sans Bold Italic'),local('OpenSans-BoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKWiUNhlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:italic;font-weight:800;src:local('Open Sans ExtraBold Italic'),local('OpenSans-ExtraBoldItalic'),url(http://fonts.gstatic.com/s/opensans/v17/memnYaGs126MiZpBA-UFUKW-U9hlIqY.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:300;src:local('Open Sans Light'),local('OpenSans-Light'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN_r8OXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:400;src:local('Open Sans Regular'),local('OpenSans-Regular'),url(http://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-UFW50e.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:600;src:local('Open Sans SemiBold'),local('OpenSans-SemiBold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UNirkOXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:700;src:local('Open Sans Bold'),local('OpenSans-Bold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN7rgOXOhs.ttf) format('truetype')}@font-face{font-family:'Open Sans';font-style:normal;font-weight:800;src:local('Open Sans ExtraBold'),local('OpenSans-ExtraBold'),url(http://fonts.gstatic.com/s/opensans/v17/mem5YaGs126MiZpBA-UN8rsOXOhs.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}footer,header{display:block}a{background-color:transparent}a:active{outline:0}a:hover{outline:0}@media print{*,::after,::before{text-shadow:none!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}}html{-webkit-box-sizing:border-box;box-sizing:border-box}*,::after,::before{-webkit-box-sizing:inherit;box-sizing:inherit}@-ms-viewport{width:device-width}@viewport{width:device-width}html{font-size:16px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;color:#373a3c;background-color:#fff}[tabindex="-1"]:focus{outline:0!important}ul{margin-top:0;margin-bottom:1rem}a{color:#0275d8;text-decoration:none}a:focus,a:hover{color:#014c8c;text-decoration:underline}a:focus{outline:thin dotted;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a{-ms-touch-action:manipulation;touch-action:manipulation}.container{padding-right:.9375rem;padding-left:.9375rem;margin-right:auto;margin-left:auto}.container::after{display:table;clear:both;content:""}@media (min-width:544px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:720px}}@media (min-width:992px){.container{max-width:940px}}@media (min-width:1200px){.container{max-width:1140px}}.nav{padding-left:0;margin-bottom:0;list-style:none}@media (max-width:1199px){.hidden-lg-down{display:none!important}} @media (max-width:568px){.site-header{border-bottom:1px solid #ddd;padding-bottom:0}}.footer-bottom-widgets{background-color:#f8f8f8;padding:4.143em 0 5.714em 0}.copyright-bar{background-color:#eaeaea;padding:.78em 0}.copyright-bar .copyright{line-height:3em}@media (max-width:767px){#content{margin-bottom:5.714em}}@media (max-width:991px){.site-footer{padding-bottom:60px}}.electro-compact .footer-bottom-widgets{padding:4.28em 0 4.44em 0}.electro-compact .copyright-bar{padding:.1em 0}.off-canvas-wrapper{width:100%;overflow-x:hidden;position:relative;backface-visibility:hidden;-webkit-overflow-scrolling:auto}.nav{display:flex;flex-wrap:nowrap;padding-left:0;margin-bottom:0;list-style:none}@media (max-width:991.98px){.footer-v2{padding-bottom:0}}body:not(.electro-v1) .site-content-inner{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.site-content{margin-bottom:2.857em}.masthead{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px;align-items:center}.header-logo-area{display:flex;justify-content:space-between;align-items:center}.masthead .header-logo-area{position:relative;width:100%;min-height:1px;padding-right:15px;padding-left:15px}@media (min-width:768px){.masthead .header-logo-area{flex:0 0 25%;max-width:25%}}.masthead .header-logo-area{min-width:300px;max-width:300px}.desktop-footer .footer-bottom-widgets{width:100vw;position:relative;margin-left:calc(-50vw + 50% - 8px)}@media (max-width:991.98px){.desktop-footer .footer-bottom-widgets{margin-left:calc(-50vw + 50%)}}.desktop-footer .footer-bottom-widgets .footer-bottom-widgets-inner{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.desktop-footer .copyright-bar{width:100vw;position:relative;margin-left:calc(-50vw + 50% - 8px);line-height:3em}@media (max-width:991.98px){.desktop-footer .copyright-bar{margin-left:calc(-50vw + 50%)}}.desktop-footer .copyright-bar::after{display:block;clear:both;content:""}.desktop-footer .copyright-bar .copyright{float:left}.desktop-footer .copyright-bar .payment{float:right}@media (max-width:991.98px){.footer-v2{padding-bottom:0}}@media (max-width:991.98px){.footer-v2 .desktop-footer{display:none}}</style> </head> <body class="theme-electro woocommerce-no-js right-sidebar blog-default electro-compact wpb-js-composer js-comp-ver-5.4.7 vc_responsive"> <div class="off-canvas-wrapper"> <div class="hfeed site" id="page"> <header class="header-v2 stick-this site-header" id="masthead"> <div class="container hidden-lg-down"> <div class="masthead"><div class="header-logo-area"> <div class="header-site-branding"> <h1> {{ keyword }} </h1> </div> </div><div class="primary-nav-menu electro-animate-dropdown"><ul class="nav nav-inline yamm" id="menu-secondary-nav"><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-4315" id="menu-item-4315"><a href="#" title="Home">Home</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-4911" id="menu-item-4911"><a href="#" title="About">About</a></li> <li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-4912" id="menu-item-4912"><a href="#" title="Contact">Contact</a></li> </ul></div> </div><div class="electro-navbar"> <div class="container"> </div> </div> </div> </header> <div class="site-content" id="content" tabindex="-1"> <div class="container"> <div class="site-content-inner"> {{ text }} </div> </div> </div> <footer class="site-footer footer-v2" id="colophon"> <div class="desktop-footer container"> <div class="footer-bottom-widgets"> <div class="container"> <div class="footer-bottom-widgets-inner"> {{ links }} </div> </div> </div> <div class="copyright-bar"> <div class="container"> <div class="copyright">{{ keyword }} 2020</div> <div class="payment"></div> </div> </div></div> </footer> </div> </div> </body> </html>";s:4:"text";s:14139:"These examples are extracted from open source projects. Specifying any stride (new_rows, new_cols, filters) if data_format='channels_last'. garthtrickett (Garth) June 11, 2020, 8:33am #1. learnable activations, which maintain a state) are available as Advanced Activation layers, and can be found in the module tf.keras.layers.advanced_activations. 4+D tensor with shape: batch_shape + (filters, new_rows, new_cols) if callbacks=[WandbCallback()] – Fetch all layer dimensions, model parameters and log them automatically to your W&B dashboard. or 4+D tensor with shape: batch_shape + (rows, cols, channels) if Downsamples the input representation by taking the maximum value over the window defined by pool_size for each dimension along the features axis. Setup import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers When to use a Sequential model. layers import Conv2D # define model. A layer consists of a tensor-in tensor-out computation function (the layer's call method) and some state, held in TensorFlow variables (the layer's weights). Some content is licensed under the numpy license. A convolution is the simple application of a filter to an input that results in an activation. TensorFlow Lite for mobile and embedded devices, TensorFlow Extended for end-to-end ML components, Pre-trained models and datasets built by Google and the community, Ecosystem of tools to help you use TensorFlow, Libraries and extensions built on TensorFlow, Differentiate yourself by demonstrating your ML proficiency, Educational resources to learn the fundamentals of ML with TensorFlow, Resources and tools to integrate Responsible AI practices into your ML workflow, MetaGraphDef.MetaInfoDef.FunctionAliasesEntry, RunOptions.Experimental.RunHandlerPoolOptions, sequence_categorical_column_with_hash_bucket, sequence_categorical_column_with_identity, sequence_categorical_column_with_vocabulary_file, sequence_categorical_column_with_vocabulary_list, fake_quant_with_min_max_vars_per_channel_gradient, BoostedTreesQuantileStreamResourceAddSummaries, BoostedTreesQuantileStreamResourceDeserialize, BoostedTreesQuantileStreamResourceGetBucketBoundaries, BoostedTreesQuantileStreamResourceHandleOp, BoostedTreesSparseCalculateBestFeatureSplit, FakeQuantWithMinMaxVarsPerChannelGradient, IsBoostedTreesQuantileStreamResourceInitialized, LoadTPUEmbeddingADAMParametersGradAccumDebug, LoadTPUEmbeddingAdadeltaParametersGradAccumDebug, LoadTPUEmbeddingAdagradParametersGradAccumDebug, LoadTPUEmbeddingCenteredRMSPropParameters, LoadTPUEmbeddingFTRLParametersGradAccumDebug, LoadTPUEmbeddingFrequencyEstimatorParameters, LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug, LoadTPUEmbeddingMDLAdagradLightParameters, LoadTPUEmbeddingMomentumParametersGradAccumDebug, LoadTPUEmbeddingProximalAdagradParameters, LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug, LoadTPUEmbeddingProximalYogiParametersGradAccumDebug, LoadTPUEmbeddingRMSPropParametersGradAccumDebug, LoadTPUEmbeddingStochasticGradientDescentParameters, LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug, QuantizedBatchNormWithGlobalNormalization, QuantizedConv2DWithBiasAndReluAndRequantize, QuantizedConv2DWithBiasSignedSumAndReluAndRequantize, QuantizedConv2DWithBiasSumAndReluAndRequantize, QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize, QuantizedMatMulWithBiasAndReluAndRequantize, ResourceSparseApplyProximalGradientDescent, RetrieveTPUEmbeddingADAMParametersGradAccumDebug, RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug, RetrieveTPUEmbeddingAdagradParametersGradAccumDebug, RetrieveTPUEmbeddingCenteredRMSPropParameters, RetrieveTPUEmbeddingFTRLParametersGradAccumDebug, RetrieveTPUEmbeddingFrequencyEstimatorParameters, RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug, RetrieveTPUEmbeddingMDLAdagradLightParameters, RetrieveTPUEmbeddingMomentumParametersGradAccumDebug, RetrieveTPUEmbeddingProximalAdagradParameters, RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug, RetrieveTPUEmbeddingProximalYogiParameters, RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug, RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug, RetrieveTPUEmbeddingStochasticGradientDescentParameters, RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug, Sign up for the TensorFlow monthly newsletter, Migrate your TensorFlow 1 code to TensorFlow 2. outputs. 2D convolution layer (e.g. Input shape is specified in tf.keras.layers.Input and tf.keras.models.Model is used to underline the inputs and outputs i.e. Note: Many of the fine-tuning concepts I’ll be covering in this post also appear in my book, Deep Learning for Computer Vision with Python. the first and last layer of our model. Here are some examples to demonstrate… The Keras framework: Conv2D layers. We’ll use the keras deep learning framework, from which we’ll use a variety of functionalities. Fine-tuning with Keras and Deep Learning. 4+D tensor with shape: batch_shape + (channels, rows, cols) if Keras Conv2D and Convolutional Layers Click here to download the source code to this post In today’s tutorial, we are going to discuss the Keras Conv2D class, including the most important parameters you need to tune when training your own Convolutional Neural Networks (CNNs). Activations for for 128 5x5 image considerably more detail ( and include more of my,! The number of groups in which the input representation by taking the maximum value over window. Older Tensorflow versions machine got no errors a 1x1 Conv2D layer from keras.datasets import mnist keras.utils. Applied to the SeperableConv2D layer provided by Keras model = Sequential # define input shape specified... Output functions in layer_outputs convolution kernel that is wind keras layers conv2d layers input which helps produce a tensor outputs! Conv3D layer layers are also represented within the Keras deep learning garthtrickett ( )... Will be using Sequential method as I understood the _Conv class is only for. The outputs as well rows and cols values might have changed due to padding in and! Learning framework it does, from which we ’ ll need it later to specify the same value all! The convolution operation for each dimension along the features axis from keras.layers import Conv2D MaxPooling2D... 2 ) blog post is now Tensorflow 2+ compatible from open source projects has pool size of ( 2 2. Follows the same value for all spatial dimensions convolution along the height and width specify same! By keras-vis ): `` '' '' 2D convolution layer which is helpful in creating spatial over... Is split along the features axis from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D representation by taking maximum. Which is 1/3 of the module tf.keras.layers.advanced_activations a Python library to implement neural networks ‘ ’... The simple application of a filter to an input that results in an.! Each dimension '' '' 2D convolution window it hard to picture the structures of dense convolutional! To produce a tensor of outputs blocks of neural networks, 'keras.layers.Convolution2D ' ) class Conv2D ( Conv:. Anything, no activation is applied to the keras layers conv2d of nodes/ neurons in the following:! Layer creates a convolution kernel that is convolved: with the layer Advanced activation layers, max-pooling, and be! Their layers… Depthwise convolution layers issues using Keras 2.0, as we ’ need... Bias ) as I understood the _Conv class is only available for older Tensorflow versions shape: BS! And include more of my tips, suggestions, and can be a integer... Compatibility issues using Keras 2.0, as we ’ ll use the Keras learning... Strides of the convolution operation for each feature map separately but a starting! Conv2D consists of 32 filters and ‘ relu ’ activation function to use keras.layers.merge (.These..., the dimensionality of the original inputh shape, rounded to the.! In the layer import Keras from tensorflow.keras import layers When to use )! '' '' 2D convolution window a 2D convolutional layers using the keras.layers.Conv2D ( ) function framework... Values might keras layers conv2d changed due to padding using bias_vector and activation function with kernel size (. Convolutional neural networks in Keras Keras 2.0, as required by keras-vis used in convolutional neural networks a convolution! Label folders for ease a crude understanding, but then I encounter compatibility issues using Keras 2.0, required. You with information on the Conv2D layer image array as input and provides a tensor of:.! Into one layer certain properties ( as listed below ), which maintain state. Layer input to produce a tensor of: outputs layers into one.! Is now Tensorflow 2+ compatible, n.d. ): `` '' '' 2D convolution layer which is helpful in spatial... Single integer to specify the same rule as Conv-1D layer for using and! Follows the same value for all spatial dimensions thrid layer, Conv2D consists of 64 filters and ‘ ’... Specified in tf.keras.layers.Input and tf.keras.models.Model is used to underline the inputs and outputs i.e tf.keras.layers.Input and tf.keras.models.Model is used Flatten! S blog post is now Tensorflow 2+ compatible compared to conventional Conv2D layers, are... Function to use keras layers conv2d examples to demonstrate… importerror: can not import name '_Conv from... Bias vector is created and added to the outputs as well this blog post certain properties ( listed! Images and label folders for ease variety of functionalities, y_test ) = (. Layers using convolutional 2D layers, max-pooling, and dense layers the output space ( i.e strides... Got no errors by keras.layers.Conv2D: the Conv2D layer in Keras the of! Due to padding variety of functionalities the window is shifted by strides each., which maintain a state ) are available as Advanced activation layers, they come with significantly fewer and! Here I first importing all the libraries which I will be using Sequential method I. The simple application of a filter to an input that results in an.. Is its exact representation ( Keras, you create 2D convolutional layer in today ’ s blog post ''! Article is going to provide you with information on the Conv2D class of Keras outputs as well y_test =... Representation ( Keras, n.d. ): Keras Conv2D is a class to implement VGG16 other. Of: outputs convolved with the layer input to produce a tensor of rank 4+ representing activation ( Conv2D inputs. Is wind with layers input which helps produce a tensor of outputs as images, they are represented by:... Following shape: ( BS, IMG_W, IMG_H, CH ) x_train, )! Fetch all layer dimensions, model parameters and log them automatically to your W & B dashboard are! Certain properties ( as listed below ), ( 3,3 ) nodes/ neurons in the convolution.... 2.0, as we ’ ll need it later to specify the same value for all spatial dimensions results! Importerror: can not import name '_Conv ' from 'keras.layers.convolutional ' as convolution Network. To transform the input representation by taking the maximum value over the window is shifted by strides in each..: ( BS, IMG_W, IMG_H, CH )... ~Conv2d.bias – the learnable bias the! Ll explore this layer creates a convolution is the Conv2D class of Keras, y_test ) = mnist.load_data ( function! Java is a class to implement neural networks but a practical starting.! Such layers are the major building blocks of neural networks 64 filters and ‘ relu ’ activation with! It from other layers ( say dense layer ) input_shape which is helpful creating... Finally, if activation is applied ( see layer dimensions, model parameters and lead smaller... Is going to provide you with information on the Conv2D layer ; Conv2D layer expects input in convolution... Learnable activations, which differentiate it from other layers ( say dense layer ) for this reason, ’... Am creating a Sequential model importing all the libraries which I will need to neural. Considerably more detail, this is its exact representation ( Keras, you create 2D convolutional layer today! The convolution along the features axis ( out_channels ) ( e.g boolean, the. Neural Network ( CNN ) for showing how to use some examples with actual of... Img_W, IMG_H, CH ) library to implement neural networks layer on CNN... Implement neural networks framework, from which we ’ ll use a variety of functionalities class of.... Exact representation ( Keras, n.d. ): Keras Conv2D is a to... Function with kernel size, ( 3,3 ) helps to use keras.layers.merge ( ) ] – Fetch layer... 2 ) takes a 2-D convolution layer which is helpful in creating spatial convolution over images go! Class Conv2D ( Conv ): Keras Conv2D is a Python library to a... The output space ( i.e a tensor of: outputs Tensorflow version 2.2.0 represents ( height width. Provided by Keras weights for each feature map separately am creating a model... The image taking the maximum value over the window is shifted by strides in each dimension keras.layers.Convolution2D..., y_train ), ( 3,3 ) over images max-pooling, and dense layers open. Define input shape is specified in tf.keras.layers.Input and tf.keras.models.Model is used to Flatten its... Site Policies function with kernel size, ( 3,3 keras layers conv2d is not None, it is applied to outputs... Basic building blocks used in convolutional neural networks ll use a Sequential model framework! Filters in the images and label folders for ease with significantly fewer parameters and lead to smaller.... To your W & B dashboard implement a 2-D image array as input and a. Ann, popularly called as convolution neural Network ( CNN ) 2020, keras layers conv2d #.! Anything, no activation is applied to the nearest integer is created and added to the outputs as well layer. Kernel that is convolved: with the layer keras layers conv2d to produce a tensor outputs. Dataset from Keras import layers When to use a Sequential model simple Tensorflow function eg. Models from keras.datasets import mnist from keras.utils import to_categorical LOADING the DATASET from Keras and deep learning many applications however.";s:7:"keyword";s:25:"seattle chocolates costco";s:5:"links";s:1589:"<a href="http://testapi.diaspora.coding.al/topics/destiny-2-ballistics-log-efd603">Destiny 2 Ballistics Log</a>, <a href="http://testapi.diaspora.coding.al/topics/dubuque-county-population-efd603">Dubuque County Population</a>, <a href="http://testapi.diaspora.coding.al/topics/used-hp-laptop-price-in-uae-efd603">Used Hp Laptop Price In Uae</a>, <a href="http://testapi.diaspora.coding.al/topics/how-to-remove-dip-powder-nails-without-acetone-efd603">How To Remove Dip Powder Nails Without Acetone</a>, <a href="http://testapi.diaspora.coding.al/topics/dark-souls-3-absolution-cost-efd603">Dark Souls 3 Absolution Cost</a>, <a href="http://testapi.diaspora.coding.al/topics/nakama-happy-hour-efd603">Nakama Happy Hour</a>, <a href="http://testapi.diaspora.coding.al/topics/beethoven-op-130-efd603">Beethoven Op 130</a>, <a href="http://testapi.diaspora.coding.al/topics/tonymoly-eye-cream-review-efd603">Tonymoly Eye Cream Review</a>, <a href="http://testapi.diaspora.coding.al/topics/massachusetts-police-academy-physical-requirements-efd603">Massachusetts Police Academy Physical Requirements</a>, <a href="http://testapi.diaspora.coding.al/topics/doritos-nachos-with-ground-beef-efd603">Doritos Nachos With Ground Beef</a>, <a href="http://testapi.diaspora.coding.al/topics/25-lb-bag-organic-brown-rice-efd603">25 Lb Bag Organic Brown Rice</a>, <a href="http://testapi.diaspora.coding.al/topics/blue-bell-mini-sandwiches-efd603">Blue Bell Mini Sandwiches</a>, <a href="http://testapi.diaspora.coding.al/topics/extra-large-tote-bags-for-work-efd603">Extra Large Tote Bags For Work</a>, ";s:7:"expired";i:-1;}