%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /var/www/html/shaban/duassis/api/public/storage/admq/cache/
Upload File :
Create Path :
Current File : //var/www/html/shaban/duassis/api/public/storage/admq/cache/6c167c409ab39afe6957346e04d68da8

a:5:{s:8:"template";s:3196:"<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en">
<head profile="http://gmpg.org/xfn/11">
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
<title>{{ keyword }}</title>
<style rel="stylesheet" type="text/css">@font-face{font-family:Roboto;font-style:normal;font-weight:400;src:local('Roboto'),local('Roboto-Regular'),url(https://fonts.gstatic.com/s/roboto/v20/KFOmCnqEu92Fr1Mu4mxP.ttf) format('truetype')}@font-face{font-family:Roboto;font-style:normal;font-weight:900;src:local('Roboto Black'),local('Roboto-Black'),url(https://fonts.gstatic.com/s/roboto/v20/KFOlCnqEu92Fr1MmYUtfBBc9.ttf) format('truetype')} html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a{background-color:transparent}a:active,a:hover{outline:0}h1{margin:.67em 0;font-size:2em}/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */@media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}p{orphans:3;widows:3}} *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:10px;-webkit-tap-highlight-color:transparent}body{font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:14px;line-height:1.42857143;color:#333;background-color:#fff}a{color:#337ab7;text-decoration:none}a:focus,a:hover{color:#23527c;text-decoration:underline}a:focus{outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}h1{font-family:inherit;font-weight:500;line-height:1.1;color:inherit}h1{margin-top:20px;margin-bottom:10px}h1{font-size:36px}p{margin:0 0 10px}@-ms-viewport{width:device-width}html{height:100%;padding:0;margin:0}body{font-weight:400;font-size:14px;line-height:120%;color:#222;background:#d2d3d5;background:-moz-linear-gradient(-45deg,#d2d3d5 0,#e4e5e7 44%,#fafafa 80%);background:-webkit-linear-gradient(-45deg,#d2d3d5 0,#e4e5e7 44%,#fafafa 80%);background:linear-gradient(135deg,#d2d3d5 0,#e4e5e7 44%,#fafafa 80%);padding:0;margin:0;background-repeat:no-repeat;background-attachment:fixed}h1{font-size:34px;color:#222;font-family:Roboto,sans-serif;font-weight:900;margin:20px 0 30px 0;text-align:center}.content{text-align:center;font-family:Helvetica,Arial,sans-serif}@media(max-width:767px){h1{font-size:30px;margin:10px 0 30px 0}} </style>
<body>
</head>
<div class="wrapper">
<div class="inner">
<div class="header">
<h1><a href="#" title="{{ keyword }}">{{ keyword }}</a></h1>
<div class="menu">
<ul>
<li><a href="#">main page</a></li>
<li><a href="#">about us</a></li>
<li><a class="anchorclass" href="#" rel="submenu_services">services</a></li>
<li><a href="#">contact us</a></li>
</ul>
</div>

</div>
<div class="content">
{{ text }}
<br>
{{ links }}
</div>
<div class="push"></div>
</div>
</div>
<div class="footer">
<div class="footer_inner">
<p>{{ keyword }} 2021</p>
</div>
</div>
</body>
</html>";s:4:"text";s:6684:"The Barra Open Optimizer is an open, flexible optimization library, specifically designed to help solve portfolio management challenges. This new version of the Barra Open Optimizer also includes: • Soft lower bound on total risk or tracking error • Frontier optimization with cardinality, threshold, and soft constraints. Hyperopt is a hyper-parameter optimisation library in python which uses TPE (a flavour of SMBO) for optimisation. ------wind get data.py. Download the file for your platform. I have conducted the following steps: Build a python file to automatically gather basic finance data from Wind Database. This is a Python module to perform exploratory and factor analysis (EFA), with several optional rotations. Files for barra-risk-model, version 0.1.5. You can see the values of x that optimize the function in res.x. Particle Swarm Optimization from Scratch with Python. Create universe based on filters, select alpha and risk factors from Barra data 3. File type. work for single-period optimization, where the trades in each period arefoundbysolvingaconvexoptimizationproblemthattradesoffex- pectedreturn,risk,transactioncostandholdingcostsuchasthebor- 9. NumPy. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. It also includes a class to perform confirmatory factor analysis (CFA), with certain pre-defined constraints. Particle swarm optimization ( PSO) is one of those rare tools that’s comically simple to code and implement while producing bizarrely good results. You define the search space: You define the objective function that you want to Build a class containing 31 modified factors. Upload date. Mathematical optimization: finding minima of functions¶. Data science output has to be f… Share. Seriously, let me show you. Mathematical optimization deals with the problem of finding numerically minimums (or maximums or zeros) of a function. The factor_analyzer In order to create a real business impact, an important consideration is to bridge the gap between the data science pipeline and business decision making pipeline. The Disciplined quasiconvex programming section has examples on quasiconvex programming. 3. If you provide a single list or array to plot, matplotlib assumes it is a sequence of y values, and automatically generates the x values for you.Since python ranges start with 0, the default x vector has the same length as y but starts with 0. no asset can contribute more than 1% risk to the total risk. For example, row 1 contains a portfolio with 18% weight in NVS, 45% in AAPL, etc. In this project, I built up a pipeline of alpha trading including: 1. factor Starting the Optimization Problem $ shape_optimization.py -f inv_NACA0012_adv.cfg -n 2 > opt.out & Python script located in the SU2-5.0.0/bin/ folder-f < file name > specifies the configuration file-n <np> specifies the number of processors To verify the location of the script: $ which shape_optimization.py You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. Select Python Examples. Pandas is already a highly optimized library but … If Rtis the (N× 1) vector of simple returns then Rp,t= w0Rt= XN i=1 wiRit Portfolio Factor Model Rt = α+ Bft+ εt⇒ Rp,t = w0α+ w0Bft+ w0εt= αp+ β0p ft+ εp,t αp = w0α,β0p = w0B,εp,t= w0εt var(Rp,t)=β0p Ωfβp+ var(εp,t)=w0BΩfB0w + w0Dw Active and Static Portfolios The optimization result does not predict what allocation would perform best outside the given time period, and the actual performance of portfolios constructed using the optimized asset weights may vary from the given performance goal. Portfolio Analysis Let w =(w1,...,wn) be a vector of portfolio weights (wi= fraction of wealth in asset i). These examples show many different ways to use CVXPY. This release also contains the following previously released features: • Native support for the Python programming language with documentation and examples. An internship project: Implement Barra model to take risk or style factor attribution based on multi-factor model. Developed in 1995 by Eberhart and Kennedy, PSO is a biologically inspired optimization routine designed to mimic birds flocking or fish schooling. After we create our font we need to render some text and blit it to the screen. Its algorithms utilize multiple optimization engines from MSCI and 3rd parties to create index tracking portfolios, manage asset allocation, implement tax-aware strategies, and other objectives of portfolio managers. If you also want to bookmark this page locally the address is: https://ibmdecisionoptimization.github.ion. The API is just awesome. 4. Use local variable if possible: Python is faster retrieving a local variable than retrieving a global … There are many libraries in the Python ecosystem for this kind of optimization problems. PySwarms: a particle swarm optimization library in Python. For the past few weeks, I’ve started an open-source project in Python by building a research toolkit for Particle Swarm Optimization (PSO). PSO is a heuristic search algorithm that was inspired by the social dynamics of birds and bees. Check out GAMS-General Algebraic Modeling System. # labels.py APPLICATION_NAME = "Application" NAVIGATION = "Navigation" DASHBOARD = "Dashboard" SYSTEM_INSPECTOR = "System Inspector" SYSTEM_PARAMETERS = "System Parameters". Since the optimization was successful, fun shows the value of the objective function at the optimized solution values. Global optimization ¶ Global optimization aims to find the global minimum of a function within given bounds, in the presence of potentially many local minima. Calculate specific risk, and create factor covariance matrix for scipy optimizer In turn, these models are the basis of soft- Hyperopt is Python library for performing automated model tuning through SMBO. Applying hyperopt for hyperparameter optimisation is a 3 step process : Defining the objective function. Defining the search space (xgb_space). Defining a trials database to save results of every iteration. python layout kivy kivy-language. If λ is large, then 1 λ will be close to zero, meaning that the investor does not have much risk tolerance (most of the emphasis in the optimization problem is placed on risk). Data Science & Machine Learning are being used by organizations to solve a variety of business problems today. Filename, size. Typically, global minimizers efficiently search the parameter space, while using a local minimizer (e.g., minimize) under the hood. ";s:7:"keyword";s:22:"barra optimizer python";s:5:"links";s:794:"<a href="https://api.duassis.com/storage/admq/borg-warner-automatic-transmission-identification">Borg Warner Automatic Transmission Identification</a>,
<a href="https://api.duassis.com/storage/admq/manchester-united-awards-2021">Manchester United Awards 2021</a>,
<a href="https://api.duassis.com/storage/admq/blitzkrieg-metallica-tuning">Blitzkrieg Metallica Tuning</a>,
<a href="https://api.duassis.com/storage/admq/sweet-soy-glaze-vs-hoisin-sauce">Sweet Soy Glaze Vs Hoisin Sauce</a>,
<a href="https://api.duassis.com/storage/admq/boston-college-early-decision">Boston College Early Decision</a>,
<a href="https://api.duassis.com/storage/admq/marrakech-airport-code">Marrakech Airport Code</a>,
<a href="https://api.duassis.com/storage/admq/trunker-banjo-kazooie">Trunker Banjo-kazooie</a>,
";s:7:"expired";i:-1;}

Zerion Mini Shell 1.0